ﻻ يوجد ملخص باللغة العربية
We calculate the modification of the effective interaction of particles on the Fermi surface due to polarization contributions, with particular attention to spin-dependent forces. In addition to the standard spin-spin, tensor and spin-orbit forces, spin non-conserving effective interactions are induced by screening in the particle-hole channels. Furthermore, a novel long-wavelength tensor force is generated. We compute the polarization contributions to second order in the low-momentum interaction V_{low k} and find that the medium-induced spin-orbit interaction leads to a reduction of the 3P2 pairing gap for neutrons in the interior of neutron stars.
Starting from general expressions of well-chosen symmetric nuclear matter quantities derived for both zero- and finite-range effective theories, we derive the contributions to the effective mass. We first show that, independently of the range, the tw
A unified description of finite nuclei and equation of state of neutron stars present a major challenge as well as opportunities for understandings of nuclear interactions.Inspired by the Lee-Huang-Yang formula of hard-sphere gases, we developed effe
We study the equation of state (EOS) for dense matter in the core of the compact star with hyperons and calculate the star structure in an effective model in the mean field approach. With varying incompressibility and effective nucleon mass, we analy
We show that the renormalization group decimation of modern nucleon potential models to low momenta results in a unique nucleon interaction V_{low k}. This interaction is free of short-ranged singularities and can be used directly in many-body calcul
The odd-odd nucleus 210Bi is studied within the framework of the shell model using effective two-body matrix elements derived from the CD-Bonn nucleon-nucleon potential. The experimental energies of the proton-neutron multiplet ph9/2 ng9/2 are remark