ترغب بنشر مسار تعليمي؟ اضغط هنا

The nucleon interaction and neutron matter from the renormalization group

66   0   0.0 ( 0 )
 نشر من قبل Achim Schwenk
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the renormalization group decimation of modern nucleon potential models to low momenta results in a unique nucleon interaction V_{low k}. This interaction is free of short-ranged singularities and can be used directly in many-body calculations. The RG scaling properties follow directly from the invariance of the scattering phase shifts. We discuss the RG treatment of Fermi liquids. The RG equation for the scattering amplitude in the two particle-hole channels is given at zero temperature. The flow equations are simplified by retaining only the leading term in an expansion in small momentum transfers. The RG flow is illustrated by first studying a system of spin-polarized fermions in a simple model. Finally, results for neutron matter are presented by employing the unique low momentum interaction V_{low k} as initial condition of the flow. The RG approach yields the amplitude for non-forward scattering, which is of great interest for calculations of transport properties and superfluid gaps in neutron star interiors. The methods used can also be applied to condensed matter systems in the absence of long-ranged interactions.



قيم البحث

اقرأ أيضاً

Some form of nonperturbative regularization is necessary if effective field theory treatments of the NN interaction are to yield finite answers. We discuss various regularization schemes used in the literature. Two of these methods involve formally i terating the divergent interaction and then regularizing and renormalizing the resultant amplitude. Either a (sharp or smooth) cutoff can be introduced, or dimensional regularization can be applied. We show that these two methods yield different results after renormalization. Furthermore, if a cutoff is used, the NN phase shift data cannot be reproduced if the cutoff is taken to infinity. We also argue that the assumptions which allow the use of dimensional regularization in perturbative EFT calculations are violated in this problem. Another possibility is to introduce a regulator into the potential before iteration and then keep the cutoff parameter finite. We argue that this does not lead to a systematically-improvable NN interaction.
129 - M. Baldo , C. Maieron 2005
We study the possible relationship between the saturation properties of nuclear matter and the inclusion of non-locality in the nucleon-nucleon interaction. To this purpose we compute the saturation curve of nuclear matter within the Bethe-Brueckner- Goldstone theory using a recently proposed realistic non-local potential, and compare it with the corresponding curves obtained with a purely local realistic interaction (Argonne v$_{18}$) and the most recent version of the one-boson exchange potential (CD Bonn). We find that the inclusion of non-locality in the two-nucleon bare interaction strongly affects saturation, but it is unable to provide a consistent description of few-body nuclear systems and nuclear matter.
Renormalization group methods can be applied to the nuclear many-body problem using the approach proposed by Shankar. We start with the two-body low momentum interaction V_{low k} and use the RG flow from the particle-hole channels to calculate the f ull scattering amplitude in the vicinity of the Fermi surface. This is a new straightforward approach to the many-body problem which is applicable also to condensed matter systems without long-range interactions, such as liquid 3He. We derive the one-loop renormalization group equations for the quasiparticle interaction and the scattering amplitude at zero temperature. The RG presents an elegant method to maintain all momentum scales and preserve the antisymmetry of the scattering amplitude. As a first application we solve the RG equations for neutron matter. The resulting quasiparticle interaction includes effects due to the polarization of the medium, the so-called induced interaction of Babu and Brown. We present results for the Fermi liquid parameters, the equation of state of neutron matter and the 1S0 superfluid pairing gap.
We compare the subtractive renormalization and the Wilsonian renormalization group approaches in the context of an effective field theory for the two-nucleon system. Based on an exactly solvable model of contact interactions, we observe that the stan dard Wilsonian renormalization group approach with a single cutoff parameter does not cover the whole space spanned by the renormalization scale parameters of the subtractive formalism. In particular, renormalization schemes corresponding to Weinbergs power counting in the case of an unnaturally large scattering length are beyond the region covered by the Wilsonian renormalization group approach. In the framework of pionless effective field theory, also extended by the inclusion of a long-range interaction of separable type, we demonstrate that Weinbergs power counting scheme is consistent in the sense that it leads to a systematic order-by-order expansion of the scattering amplitude.
190 - R. Machleidt , I. Slaus 2001
We review the major progress of the past decade concerning our understanding of the nucleon-nucleon interaction. The focus is on the low-energy region (below pion production threshold), but a brief outlook towards higher energies is also given. The i tems discussed include charge-dependence, the precise value of the $pi NN$ coupling constant, phase shift analysis and high-precision NN data and potentials. We also address the issue of a proper theory of nuclear forces. Finally, we summarize the essential open questions that future research should be devoted to.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا