ﻻ يوجد ملخص باللغة العربية
The nuclear binding energies for 28 nuclei including several isotopic chains with masses ranging from A=64 to A=226 were evaluated using the Skyrme effective nucleon-nucleon interaction and the Extended Thomas-Fermi approximation. The neutron and proton density distributions are assumed in the form of Fermi functions the parameters of which are determined so as to minimize the total binding energy of any given nucleus. The present study is restricted to quadrupole shapes, but the neutron and proton density distributions are free to have different deformations. A simple expression for the variation of the nuclear energy with the neutron--proton deformation difference is derived.
The isoscalar proton-neutron pairing and isovector pairing, including both isovector proton-neutron pairing and like-particle pairing, are treated in a formalism which conserves exactly the particle number and the isospin. The formalism is designed f
Longitudinal ternary and binary fission barriers of $^{36}$Ar, $^{56}$Ni and $^{252}$Cf nuclei have been determined within a rotational liquid drop model taking into account the nuclear proximity energy. For the light nuclei the heights of the ternar
The relationship between the volume and surface energy coefficients in the liquid drop A^{-1/3} expansion of nuclear masses is discussed. The volume and surface coefficients in the liquid drop expansion share the same physical origin and their physic
The neutron drop is firstly investigated in an axially symmetric harmonic oscillator (ASHO) field, whose potential strengths of different directions can be controlled artificially. The shape of the neutron drop will change from spherical to oblate or
The long standing problem of neutron-proton pairing correlations is revisited by employing the Hartree-Fock-Bogoliubov formalism with neutron-proton mixing in both the particle-hole and particle-hole channels. We compare numerical calculations perfor