ﻻ يوجد ملخص باللغة العربية
The neutron drop is firstly investigated in an axially symmetric harmonic oscillator (ASHO) field, whose potential strengths of different directions can be controlled artificially. The shape of the neutron drop will change from spherical to oblate or prolate according to the anisotropy of the external field. With the potential strength increasing in the axial direction, the neutron prefers to occupy the orbital perpendicular to the symmetry axis. On the contrary, the neutron likes to stay in the orbital parallel to the symmetry axis when the potential strength increases in the radial direction. Meanwhile, when the potential strength of one direction disappears, the neutron drop cannot bind together. These investigations are not only helpful to simulate the properties of neutrons in finite nuclei but also provide the theoretical predictions to the future artificial operations on the nuclei like the ultracold atom system, for a deeper realization of quantum many-body systems.
There is an increasing theoretical and observational evidence that the external magnetic field of magnetars may contain a toroidal component, likely of the same order of the poloidal one. Such twisted magnetospheres are threaded by currents flowing a
The nuclear binding energies for 28 nuclei including several isotopic chains with masses ranging from A=64 to A=226 were evaluated using the Skyrme effective nucleon-nucleon interaction and the Extended Thomas-Fermi approximation. The neutron and pro
Nucleon momentum distribution (NMD), particularly its high-momentum components, is essential for understanding the nucleon--nucleon ($ NN $) correlations in nuclei. Herein, we develop the studies of NMD of $^{56}text{Fe}$ from the axially deformed re
We use the finite amplitude method (FAM), an efficient implementation of the quasiparticle random phase approximation, to compute beta-decay rates with Skyrme energy-density functionals for 3983 nuclei, essentially all the medium-mass and heavy isoto
The location of the neutron drip line, currently known for only the lightest elements, remains a fundamental question in nuclear physics. Its description is a challenge for microscopic nuclear energy density functionals, as it must take into account