ترغب بنشر مسار تعليمي؟ اضغط هنا

Saturation properties of nuclear matter and correlated nucleons

89   0   0.0 ( 0 )
 نشر من قبل Willem H. Dickhoff
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A brief overview is given of the properties of spectral functions in finite nuclei as obtained from (e,ep) experiments. Based on recent experimental data from this reaction it is argued that the empirical value of the saturation density of nuclear matter is dominated by short-range correlations. This observation and the observed fragmentation and depletion of the single-particle strength in nuclei provide the motivation for attempting a self-consistent description of the nucleon spectral functions with full inclusion of short-range and tensor correlations in nuclear matter. Results for these ``second generation spectral functions will be discussed with emphasis on the consequences for the saturation properties of nuclear matter. Arguments are presented to clarify the obscuring role of pionic long-range correlations in this long-standing problem.

قيم البحث

اقرأ أيضاً

99 - Jin-Biao Wei 2019
We investigate properties of nuclear matter and examine possible correlations with neutron star observables for a set of microscopic nuclear equations of state derived within the Brueckner-Hartree-Fock formalism employing compatible three-body forces . We find good candidates for a realistic nuclear EOS up to high density and confirm strong correlations between neutron star radius, tidal deformability, and the pressure of betastable matter. No correlations are found with the saturation properties of nuclear matter.
129 - M. Baldo , C. Maieron 2005
We study the possible relationship between the saturation properties of nuclear matter and the inclusion of non-locality in the nucleon-nucleon interaction. To this purpose we compute the saturation curve of nuclear matter within the Bethe-Brueckner- Goldstone theory using a recently proposed realistic non-local potential, and compare it with the corresponding curves obtained with a purely local realistic interaction (Argonne v$_{18}$) and the most recent version of the one-boson exchange potential (CD Bonn). We find that the inclusion of non-locality in the two-nucleon bare interaction strongly affects saturation, but it is unable to provide a consistent description of few-body nuclear systems and nuclear matter.
We compute the distribution of quasideuterons in doubly closed shell nuclei and infinite correlated nuclear matter. The ground states of $^{16}$O and $^{40}$Ca are described in $ls$ coupling using a realistic hamiltonian including the Argonne $v_{8}^ prime$ and the Urbana IX models of two-- and three--nucleon potentials, respectively. The nuclear wave function contains central and tensor correlations, and correlated basis functions theory is used to evaluate the distribution of neutron-proton pairs, having the deuteron quantum numbers, as a function of their total momentum. By computing the number of deuteron--like pairs we are able to extract the Levingers factor and compare to both the available experimental data and the predictions of the local density approximation, based on nuclear matter estimates. The agreement with the experiments is excellent, whereas the local density approximation is shown to sizably overestimate the Levingers factor in the region of the medium nuclei.
153 - Arnau Rios 2006
Realistic nucleon-nucleon interaction induce correlations to the nuclear many-body system which lead to a fragmentation of the single-particle strength over a wide range of energies and momenta. We address the question of how this fragmentation affec ts the thermodynamical properties of nuclear matter. In particular, we show that the entropy can be computed with the help of a spectral function which can be evaluated in terms of the self-energy obtained in the Self-Consistent Greens Function approach. Results for the density and temperature dependences of the entropy per particle for symmetric nuclear matter are presented and compared to the results of lowest order finite temperature Brueckner--Hartree--Fock calculations. The effects of correlations on the calculated entropy are small, if the appropriate quasi-particle approximation is used. The results demonstrate the thermodynamical consistency of the self-consistent T-matrix approximation for the evaluation of the Greens functions.
Taking into account the terrestrial experiments and the recent astrophysical observations of neutron stars and gravitational-wave signals, we impose restrictions on the equation of state (EoS) for isospin-asymmetric nuclear matter. Using the relativi stic mean-field model with SU(3) flavor symmetry, we investigate the impacts of effective nucleon mass, nuclear incompressibility, and slope parameter of nuclear symmetry energy on the nuclear and neutron-star properties. It is found that the astrophysical information of massive neutron stars and tidal deformabilities as well as the nuclear experimental data plays an important role to restrict the EoS for neutron stars. Especially, the softness of the nuclear EoS due to the existence of hyperons in the core gives stringent constraints on those physical quantities. Furthermore, it is possible to put limits on the curvature parameter of nuclear symmetry energy by means of the nuclear and astrophysical calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا