ﻻ يوجد ملخص باللغة العربية
We investigate properties of nuclear matter and examine possible correlations with neutron star observables for a set of microscopic nuclear equations of state derived within the Brueckner-Hartree-Fock formalism employing compatible three-body forces. We find good candidates for a realistic nuclear EOS up to high density and confirm strong correlations between neutron star radius, tidal deformability, and the pressure of betastable matter. No correlations are found with the saturation properties of nuclear matter.
We explore the equation of state for nuclear matter in the quark-meson coupling model, including full Fock terms. The comparison with phenomenological constraints can be used to restrict the few additional parameters appearing in the Fock terms which
A brief overview is given of the properties of spectral functions in finite nuclei as obtained from (e,ep) experiments. Based on recent experimental data from this reaction it is argued that the empirical value of the saturation density of nuclear ma
New observational data of neutron stars since GW170817 have helped improve our knowledge about nuclear symmetry energy especially at high densities. We have learned particularly: (1) The slope parameter $L$ of nuclear symmetry energy at saturation de
We have previously found a new phase of cold nuclear matter based on a holographic gauge theory, where baryons are introduced as instanton gas in the probe D8/$overline{rm D8}$ branes. In our model, we could obtain the equation of state (EOS) of our
The self-energy effect on the neutron-proton (np) pairing gap is investigated up to the third order within the framework of the extend Bruecker-Hartree-Fock (BHF) approach combined with the BCS theory. The self-energy up to the second-order contribut