ترغب بنشر مسار تعليمي؟ اضغط هنا

Decay of neutron-rich Mn nuclides and deformation of heavy Fe isotopes

70   0   0.0 ( 0 )
 نشر من قبل Bernd Pfeiffer
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of chemically selective laser ionization combined with beta-delayed neutron counting at CERN/ISOLDE has permitted identification and half-life measurements for 623-ms Mn-61 up through 14-ms Mn-69. The measured half-lives are found to be significantly longer near N=40 than the values calculated with a QRPA shell model using ground-state deformations from the FRDM and ETFSI models. Gamma-ray singles and coincidence spectroscopy has been performed for Mn-64 and Mn-66 decays to levels of Fe-64 and Fe-66, revealing a significant drop in the energy of the first 2+ state in these nuclides that suggests an unanticipated increase in collectivity near N=40.

قيم البحث

اقرأ أيضاً

We report on the mass measurements of several neutron-rich $mathrm{Rb}$ and $mathrm{Sr}$ isotopes in the $A approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,9 9}mathrm{Rb}$ and $^{98-100}mathrm{Sr}$ have been determined with a precision of $6 - 12 mathrm{keV}$, making their uncertainty negligible for r-process nucleosynthesis network calculations. The mass of $^{101}mathrm{Sr}$ has been determined directly for the first time with a precision eight times higher than the previous indirect measurement and a deviation of $3sigma$ when compared to the Atomic Mass Evaluation. We also confirm the mass of $^{100}mathrm{Rb}$ from a previous measurement. Furthermore, our data indicates the existance of a low-lying isomer with $80 mathrm{keV}$ excitation energy in $^{98}mathrm{Rb}$. We show that our updated mass values lead to minor changes in the r-process by calculating fractional abundances in the $Aapprox 100$ region of the nuclear chart.
Storage-ring mass spectrometry was applied to neutron-rich $^{197}$Au projectile fragments. Masses of $^{181,183}$Lu, $^{185,186}$Hf, $^{187,188}$Ta, $^{191}$W, and $^{192,193}$Re nuclei were measured for the first time. The uncertainty of previously known masses of $^{189,190}$W and $^{195}$Os nuclei was improved. Observed irregularities on the smooth two-neutron separation energies for Hf and W isotopes are linked to the collectivity phenomena in the corresponding nuclei.
111 - J. Wu , S. Nishimura , P. Moller 2020
The $beta$-decay half-lives of 55 neutron-rich nuclei $^{134-139}$Sn, $^{134-142}$Sb, $^{137-144}$Te, $^{140-146}$I, $^{142-148}$Xe, $^{145-151}$Cs, $^{148-153}$Ba, $^{151-155}$La were measured at the Radioactive Isotope Beam Factory (RIBF) employing the projectile fission fragments of $^{238}$U. The nuclear level structure, which relates to deformation, has a large effect on the half-lives. The impact of newly-measured half-lives on modeling the astrophysical origin of the heavy elements is studied in the context of $r$ process nucleosynthesis. For a wide variety of astrophysical conditions, including those in which fission recycling occurs, the half-lives have an important local impact on the second ($A$ $approx$ 130) peak.
76 - N. Frank , T. Baumann , D. Bazin 2007
The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24O, a resonance at 45(2) k eV above the neutron separation energy was observed in 23O.
The low energy structure of Fe-65 has been studied by means of gamma- and fast-timing spectroscopy. A level scheme of Fe-65 populated following the beta-decay of Mn-65 was established for the first time. It includes 41 levels and 85 transitions. The excitation energy of the beta-decaying isomer in Fe-65 has been precisely determined at 393.7(2) keV. The beta delayed neutron emission branch was measured as Pn = 7.9(12)%, which cannot be reconciled with the previously reported value of 21.0(5)%. Four gamma-rays and four excited states in Fe-64 were identified as being populated following the beta-n decay. Four lifetimes and five lifetime limits in the subnanosecond range have been measured using the Advanced Time-Delayed Method. The level scheme is compared with shell-model calculations. Tentative spin and parity assignments are proposed based on the observed transition rates, the calculations and the systematics of the region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا