ﻻ يوجد ملخص باللغة العربية
Electron capture and beta decay play important roles in the evolution of pre-supernovae stars and their eventual core collapse. These rates are normally predicted through shell-model calculations. Experimentally determined strength distributions from charge-exchange reactions are needed to test modern shell-model calculations. We report on the measurement of the Gamow-Teller strength distribution in 58Co from the 58Ni(t,3He) reaction with a secondary triton beam of an intensity of ~10^6 pps at 115 MeV/nucleon and a resolution of ~250 keV. Previous measurements with the 58Ni(n,p) and the 58Ni(d,2He) reactions were inconsistent with each other. Our results support the latter. We also compare the results to predictions of large-scale shell model calculations using the KB3G and GXPF1 interactions and investigate the impact of differences between the various experiments and theories in terms of the weak rates in the stellar environment. Finally, the systematic uncertainties in the normalization of the strength distribution extracted from 58Ni(3He,t) are described and turn out to be non-negligible due to large interferences between the dL=0, dS=1 Gamow-Teller amplitude and the dL=2, dS=1 amplitude.
Gamow-Teller transitions from 24Mg to 24Na were studied via the (t,3He) reaction at 115 AMeV using a secondary triton beam produced via fast fragmentation of 150 AMeV 16O ions. Compared to previous (t,3He) experiments at this energy that employed a p
Charge-exchange reactions are an important tool for determining weak-interaction rates. They provide stringent tests for nuclear structure models necessary for modeling astrophysical environments such as neutron stars and core-collapse supernovae. In
The 24Mg(3He,t)24Al reaction has been studied at E(3He)=420 MeV. An energy resolution of 35 keV was achieved. Gamow-Teller strengths to discrete levels in 24Al are extracted by using a recently developed empirical relationship for the proportionality
Gamow-Teller and dipole transitions to final states in 13B were studied via the 13C(t,3He) reaction at Et = 115 AMeV. Besides the strong Gamow-Teller transition to the 13B ground state, a weaker Gamow-Teller transition to a state at 3.6 MeV was found
The proportionality between differential cross sections at vanishing linear momentum transfer and Gamow-Teller transition strength, expressed in terms of the textit{unit cross section} ($hat{sigma}_{GT}$) was studied as a function of target mass numb