ﻻ يوجد ملخص باللغة العربية
We are developing an Optical Readout Time Projection Chamber (O-TPC) detector for the study of the 12C(a,g)16O reaction that determines the ratio of carbon to oxygen in helium burning. This ratio is crucial for understanding the final fate of a progenitor star and the nucleosynthesis of elements prior to a Type II supernova; an oxygen rich star is predicted to collapse to a black hole, and a carbon rich star to a neutron star. Type Ia supernovae (SNeIa) are used as standard candles for measuring cosmological distances with the use of an empirical light curve-luminosity stretching factor. It is essential to understand helium burning that yields the carbon/oxygen white dwarf and thus the initial stage of SNeIa. The O-TPC is intended for use with high intensity photon beams extracted from the HIgS/TUNL facility at Duke University to study the 16O(g,a)12C reaction, and thus the direct reaction at energies as low as 0.7 MeV. We are conducting a systematical study of the best oxygen containing gas with light emitting admixture(s) for use in such an O-TPC. Preliminary results with CO_2 + TEA mixture were obtained
We describe the readout electronics for the STAR Time Projection Chamber. The system is made up of 136,608 channels of waveform digitizer, each sampling 512 time samples at 6-12 Mega-samples per second. The noise level is about 1000 electrons, and th
Measurements of proton-nucleus scattering and high resolution neutrino-nucleus interaction imaging are key to reduce neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has be
We report about a nuclear track imaging system which is designed to study in detail the ionization topology of charged particle tracks in a low-pressure gas. The detection method is based on a time projection chamber (TPC) filled with low-pressure tr
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a
Micro-TPC, a time projection chamber(TPC) with micro pixel chamber($mu$-PIC) readout was developed for the detection of the three-dimensional fine(sub-m illimeter) tracks of charged particles. We developed a two-dimensional position sensitive gaseous