ترغب بنشر مسار تعليمي؟ اضغط هنا

A time projection chamber with optical readout for charged particle track structure imaging

131   0   0.0 ( 0 )
 نشر من قبل Volker Dangendorf Dr
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report about a nuclear track imaging system which is designed to study in detail the ionization topology of charged particle tracks in a low-pressure gas. The detection method is based on a time projection chamber (TPC) filled with low-pressure triethylamine (TEA). Ionization electrons produced by energetic charged particles are three-dimensionally imaged by recording light from electron avalanches with an intensified CCD system. The detector permits to inves-tigate the spatial ionization distributions of particle tracks in gas, of equivalent length and resolution in tissue of 4 mm and 40 nm (RMS), respectively. We explain the relevance of this technique for dosimetry, describe the experimental method and the basic operation parameters. First results of the chamber response to protons and alpha particles are presented.



قيم البحث

اقرأ أيضاً

We describe first results obtained with a track structure imaging system for measuring the ionisation topology of charged particles in a low-pressure gas. The detection method is based on a time projection chamber (TPC) filled with low-pressure triet hylamine (TEA). Images of ionisation tracks of electrons, protons, and heavier ions are presented and analysed.
197 - J.W. Lee , G. Jhang , G. Cerizza 2020
In this paper, we present a software framework, S$pi$RITROOT, which is capable of track reconstruction and analysis of heavy-ion collision events recorded with the S$pi$RIT time projection chamber. The track-fitting toolkit GENFIT and the vertex reco nstruction toolkit RAVE are applied to a box-type detector system. A pattern recognition algorithm which performs helix track finding and handles overlapping pulses is described. The performance of the software is investigated using experimental data obtained at the Radioactive Isotope Beam Facility (RIBF) at RIKEN. This work focuses on data from $^{132}$Sn + $^{124}$Sn collision events with beam energy of 270 AMeV. Particle identification is established using $left<dE/dxright>$ and magnetic rigidity, with pions, hydrogen isotopes, and helium isotopes.
Measurements of proton-nucleus scattering and high resolution neutrino-nucleus interaction imaging are key to reduce neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has be en constructed and operated at Royal Holloway University of London and CERN as a first step in the development of a HPTPC capable of performing these measurements as part of a future long-baseline neutrino oscillation experiment such as the Deep Underground Neutrino Experiment. In this paper we describe the design and operation of the prototype HPTPC with an argon based gas mixture. We report on the successful hybrid charge and optical readout, using four CCD cameras, of signals from Am-241 sources.
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.
A micro time-projection-chamber (micro-TPC) with a detection volume of 23*28*31 cm^3 was developed, and its fundamental performance was examined. The micro-TPC consists of a micro pixel chamber with a detection area of 31*31 cm^2 as a two-dimensional imaging device and a gas electron multiplier with an effective area of 23*28 cm^2 as a pre-gas-multiplier. The micro-TPC was operated at a gas gain of 50,000, and energy resolutions and spatial resolutions were measured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا