ﻻ يوجد ملخص باللغة العربية
We report about a nuclear track imaging system which is designed to study in detail the ionization topology of charged particle tracks in a low-pressure gas. The detection method is based on a time projection chamber (TPC) filled with low-pressure triethylamine (TEA). Ionization electrons produced by energetic charged particles are three-dimensionally imaged by recording light from electron avalanches with an intensified CCD system. The detector permits to inves-tigate the spatial ionization distributions of particle tracks in gas, of equivalent length and resolution in tissue of 4 mm and 40 nm (RMS), respectively. We explain the relevance of this technique for dosimetry, describe the experimental method and the basic operation parameters. First results of the chamber response to protons and alpha particles are presented.
We describe first results obtained with a track structure imaging system for measuring the ionisation topology of charged particles in a low-pressure gas. The detection method is based on a time projection chamber (TPC) filled with low-pressure triet
In this paper, we present a software framework, S$pi$RITROOT, which is capable of track reconstruction and analysis of heavy-ion collision events recorded with the S$pi$RIT time projection chamber. The track-fitting toolkit GENFIT and the vertex reco
Measurements of proton-nucleus scattering and high resolution neutrino-nucleus interaction imaging are key to reduce neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has be
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a
A micro time-projection-chamber (micro-TPC) with a detection volume of 23*28*31 cm^3 was developed, and its fundamental performance was examined. The micro-TPC consists of a micro pixel chamber with a detection area of 31*31 cm^2 as a two-dimensional