ﻻ يوجد ملخص باللغة العربية
We have observed beta-delayed proton emission from the neutron-rich nucleus 11Be by analysing a sample collected at the ISOLDE facility at CERN with accelerator mass spectrometry (AMS). With a branching ratio of (8.4 +- 0.6) 10^{-6} the strength of this decay mode, as measured by the B(GT)-value, is unexpectedly high. The result is discussed within a simple single-particle model and could be interpreted as a quasi-free decay of the 11Be halo neutron into a single-proton state.
The shape and normalisation of the beta-delayed alpha spectrum from 11Be was measured by implanting 11Be ions in a segmented Si detector. The spectrum is found to be dominated by a well-known transition to the 3/2+ state at Ex = 9.87MeV in 11B. A sig
The standard model predicts that, in addition to a proton, an electron, and an antineutrino, a continuous spectrum of photons is emitted in the $beta$ decay of the free neutron. We report on the RDK II experiment which measured the photon spectrum us
Precision measurements of free neutron $beta$-decay have been used to precisely constrain our understanding of the weak interaction. However the neutron Fierz interference term $b_n$, which is particularly sensitive to Beyond-Standard-Model tensor cu
Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.
The 11Be(p,d)10Be reaction has been performed in inverse kinematics with a radioactive 11Be beam of E/A = 35.3 MeV. Angular distributions for the 0+ ground state, the 2+, 3.37 MeV state and the multiplet of states around 6 MeV in 10Be were measured a