ترغب بنشر مسار تعليمي؟ اضغط هنا

Branching ratio measurements of the 7.12-MeV state in 16O

63   0   0.0 ( 0 )
 نشر من قبل Catalin Matei
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge of the gamma-ray branching ratios of the 7.12-MeV state of 16O is important for the extrapolation of the 12C(a,g)16O cross section to astrophysical energies. Ground state transitions provide most of the 12C(a,g)16O total cross section while cascade transitions have contributions of the order of 10-20%. Determining the 7.12-MeV branching ratio will result in a better extrapolation of the cascade and E2 ground state cross section to low energies. We report here on measurements on the branching ratio of the 7.12-MeV level in 16O.



قيم البحث

اقرأ أيضاً

80 - T.Wakasa , E.Ihara , K.Fujita 2006
Inelastic $alpha$ scattering on 16O is studied at 400 MeV by using an ice target. Near the 4-alpha breakup threshold of 14.4 MeV, a broad peak is observed at an excitation energy of 13.6+/-0.2 MeV with a width of 0.6+/-0.2 MeV. The spin-parity is est imated to be 0+ from the momentum-transfer dependence. The observed width is significantly larger than those of the neighboring 0+ states indicating a state with a well-developed alpha cluster structure. The magnitude of the cross section is sensitive to the density distribution of the constituent alpha clusters. The observed cross section is consistent with the theoretical prediction for the alpha cluster condensed state characterized by its dilute density distribution with a large root-mean-square radius of about 4.3 fm.
The data of inelastic 16O+16O scattering to the lowest 2+ and 3- excited states of 16O have been measured at Elab = 250, 350, 480, 704 and 1120 MeV and analyzed consistently in the distorted wave Born approximation (DWBA), using the semi- microscopic optical potentials and inelastic form factors given by the folding model, to reveal possible refractive structure of the nuclear rainbow that was identified earlier in the elastic 16O+16O scattering channel at the same energies. Given the known transition strengths of the 2+ and 3- states of 16O well determined from the (e,e) data, the DWBA description of the inelastic data over the whole angular range was possible only if the absorption in the exit channels is significantly increased (especially, for the 16O+16O(2+) exit channel). Although the refractive pattern of the inelastic 16O+16O scattering was found to be less pronounced compared to that observed in the elastic scattering channel, a clear remnant of the main rainbow maximum could still be seen in the inelastic cross section at Elab = 350 - 704 MeV.
Stellar carbon synthesis occurs exclusively via the $3alpha$ process, in which three $alpha$ particles fuse to form $^{12}$C in the excited Hoyle state, followed by electromagnetic decay to the ground state. The Hoyle state is above the $alpha$ thres hold, and the rate of stellar carbon production depends on the radiative width of this state. The radiative width cannot be measured directly, and must instead be deduced by combining three separately measured quantities. One of these quantities is the $E0$ decay branching ratio of the Hoyle state, and the current $10$% uncertainty on the radiative width stems mainly from the uncertainty on this ratio. The $E0$ branching ratio was deduced from a series of pair conversion measurements of the $E0$ and $E2$ transitions depopulating the $0^+_2$ Hoyle state and $2^+_1$ state in $^{12}$C, respectively. The excited states were populated by the $^{12}$C$(p,p^prime)$ reaction at 10.5 MeV beam energy, and the pairs were detected with the electron-positron pair spectrometer, Super-e, at the Australian National University. The deduced branching ratio required knowledge of the proton population of the two states, as well as the alignment of the $2^+_1$ state in the reaction. For this purpose, proton scattering and $gamma$-ray angular distribution experiments were also performed. An $E0$ branching ratio of $Gamma^{E0}_{pi}/Gamma=8.2(5)times10^{-6}$ was deduced in the current work, and an adopted value of $Gamma^{E0}_{pi}/Gamma=7.6(4)times10^{-6}$ is recommended based on a weighted average of previous literature values and the new result. The new recommended value for the $E0$ branching ratio is about 14% larger than the previous adopted value of $Gamma^{E0}_{pi}/Gamma=6.7(6)times10^{-6}$, while the uncertainty has been reduced from 9% to 5%.
We used the 8$pi$ $gamma$-ray spectrometer at the TRIUMF-ISAC radiocative ion beam facility to obtain high-precision branching ratios for $^{19}$Ne $beta^+$ decay to excited states in $^{19}$F. Together with other previous work, our measurements dete rmine the superallowed $1/2^+ to 1/2^+$ beta branch to the ground state in $^{19}$F to be 99.9878(7)%, which is three times more precise than known previously. The implications of these measurements for testing a variety of weak interaction symmetries are discussed briefly.
This paper reports on the first measurement of the ^16O(e,epn)^14N reaction. Data were measured in kinematics centred on a super-parallel geometry at energy and momentum transfers of 215 MeV and 316 MeV/c. The experimental resolution was sufficient t o distinguish groups of states in the residual nucleus but not good enough to separate individual states. The data show a strong dependence on missing momentum and this dependence appears to be different for two groups of states in the residual nucleus. Theoretical calculations of the reaction using the Pavia code do not reproduce the shape or the magnitude of the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا