ﻻ يوجد ملخص باللغة العربية
Knowledge of the gamma-ray branching ratios of the 7.12-MeV state of 16O is important for the extrapolation of the 12C(a,g)16O cross section to astrophysical energies. Ground state transitions provide most of the 12C(a,g)16O total cross section while cascade transitions have contributions of the order of 10-20%. Determining the 7.12-MeV branching ratio will result in a better extrapolation of the cascade and E2 ground state cross section to low energies. We report here on measurements on the branching ratio of the 7.12-MeV level in 16O.
Inelastic $alpha$ scattering on 16O is studied at 400 MeV by using an ice target. Near the 4-alpha breakup threshold of 14.4 MeV, a broad peak is observed at an excitation energy of 13.6+/-0.2 MeV with a width of 0.6+/-0.2 MeV. The spin-parity is est
The data of inelastic 16O+16O scattering to the lowest 2+ and 3- excited states of 16O have been measured at Elab = 250, 350, 480, 704 and 1120 MeV and analyzed consistently in the distorted wave Born approximation (DWBA), using the semi- microscopic
Stellar carbon synthesis occurs exclusively via the $3alpha$ process, in which three $alpha$ particles fuse to form $^{12}$C in the excited Hoyle state, followed by electromagnetic decay to the ground state. The Hoyle state is above the $alpha$ thres
We used the 8$pi$ $gamma$-ray spectrometer at the TRIUMF-ISAC radiocative ion beam facility to obtain high-precision branching ratios for $^{19}$Ne $beta^+$ decay to excited states in $^{19}$F. Together with other previous work, our measurements dete
This paper reports on the first measurement of the ^16O(e,epn)^14N reaction. Data were measured in kinematics centred on a super-parallel geometry at energy and momentum transfers of 215 MeV and 316 MeV/c. The experimental resolution was sufficient t