ﻻ يوجد ملخص باللغة العربية
We used the 8$pi$ $gamma$-ray spectrometer at the TRIUMF-ISAC radiocative ion beam facility to obtain high-precision branching ratios for $^{19}$Ne $beta^+$ decay to excited states in $^{19}$F. Together with other previous work, our measurements determine the superallowed $1/2^+ to 1/2^+$ beta branch to the ground state in $^{19}$F to be 99.9878(7)%, which is three times more precise than known previously. The implications of these measurements for testing a variety of weak interaction symmetries are discussed briefly.
Measurements of the beta-neutrino correlation coefficient (a$_{beta u}$) in nuclear beta decay, together with the Fierz interference term (b$_F$), provide a robust test for the existence of exotic interactions beyond the Standard Model of Particle Ph
We present the full description of a measurement of the branching ratios for the beta-decay of 38Ca. This decay includes five allowed 0+ --> 1+ branches and a superallowed 0+ --> 0+ one. With our new result for the latter, we determine its ft value t
In an experiment performed at the ISOLDE facility of CERN, the super-allowed beta-decay branching ratio of 10C was determined with a high-precision single-crystal germanium detector. In order to evaluate the contribution of the pile-up of two 511 keV
Background: The $^{15}$O($alpha ,gamma$)$^{19}$Ne bottleneck reaction in Type I x-ray bursts is the most important thermonuclear reaction rate to constrain experimentally, in order to improve the accuracy of burst light-curve simulations. A proposed
While the 12C(a,g)16O reaction plays a central role in nuclear astrophysics, the cross section at energies relevant to hydrostatic helium burning is too small to be directly measured in the laboratory. The beta-delayed alpha spectrum of 16N can be us