ترغب بنشر مسار تعليمي؟ اضغط هنا

Spinodal decomposition, nuclear fog and two characteristic volumes in thermal multifragmentation

61   0   0.0 ( 0 )
 نشر من قبل Irena Skwirczynska
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid-fog phase transition inside the spinodal region. The experimental data for p(8.1GeV) + Au collisions are analyzed within the framework of the statistical multifragmentation model (SMM) for the events with emission of at least two IMFs. It is found that the partition of hot nuclei is specified after expansion to a volume equal to Vt = (2.6+-0.3) Vo, with Vo as the volume at normal density. However, the freeze-out volume is found to be twice as large: Vf = (5+-1) Vo.

قيم البحث

اقرأ أيضاً

Multifragmentation of a ``fused system was observed for central collisions between 32 MeV/nucleon 129Xe and natSn. Most of the resulting charged products were well identified thanks to the high performances of the INDRA 4pi array. Experimental higher -order charge correlations for fragments show a weak but non ambiguous enhancement of events with nearly equal-sized fragments. Supported by dynamical calculations in which spinodal decomposition is simulated, this observed enhancement is interpreted as a ``fossil signal of spinodal instabilities in finite nuclear systems.
Multifragmentation of fused systems was observed for central collisions between 32 AMeV 129Xe and Sn, and 36 AMeV 155Gd and U. Previous extensive comparisons between the two systems led to the hypothesis of spinodal decomposition of finite systems as the origin of multifragmentation for incident energies around 30 AMeV. New results on velocity and charge correlations of fragments bring strong arguments in favor of this interpretation.
Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid-fog phase transition. The charge distributions of the intermediate mass fragments produced in p(3.6 GeV) + Au and p(8.1 GeV) + Au collisions are analyzed within the statist ical multifragmentation model with the critical temperature for the nuclear liquid-gas phase transition Tc as a free parameter. The analysis presented here provides strong support for a value of Tc > 15 MeV.
A systematic analysis of the moments of the fragment size distribution has been carried out for the multifragmentation (MF)of 1A GeV Au, La, and Kr on carbon. The breakup of Au and La is consistent with a continuous thermal phase transition. The data indicate that the excitation energy per nucleon and isotopic temperature at the critical point decrease with increasing system size. This trend is attributed primarily to the increasing Coulomb energy with finite size effects playing a smaller role.
In this contribution we show that the biggest fragment charge distribution in central collisions of Xe+Sn leading to multifragmentation is an admixture of two asymptotic distributions observed for the lowest and highest bombarding energies. The evolu tion of the relative weights of the two components with bombarding energy is shown to be analogous to that observed as a function of time for the largest cluster produced in irreversible aggregation for a finite system. We infer that the size distribution of the largest fragment in nuclear multifragmentation is also characteristic of the time scale of the process, which is largely determined by the onset of radial expansion in this energy range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا