ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Spinodal Decomposition in Nuclear Multifragmentation

71   0   0.0 ( 0 )
 نشر من قبل Rivet Marie-France
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Multifragmentation of a ``fused system was observed for central collisions between 32 MeV/nucleon 129Xe and natSn. Most of the resulting charged products were well identified thanks to the high performances of the INDRA 4pi array. Experimental higher-order charge correlations for fragments show a weak but non ambiguous enhancement of events with nearly equal-sized fragments. Supported by dynamical calculations in which spinodal decomposition is simulated, this observed enhancement is interpreted as a ``fossil signal of spinodal instabilities in finite nuclear systems.

قيم البحث

اقرأ أيضاً

Multifragmentation of fused systems was observed for central collisions between 32 AMeV 129Xe and Sn, and 36 AMeV 155Gd and U. Previous extensive comparisons between the two systems led to the hypothesis of spinodal decomposition of finite systems as the origin of multifragmentation for incident energies around 30 AMeV. New results on velocity and charge correlations of fragments bring strong arguments in favor of this interpretation.
Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid-fog phase transition inside the spinodal region. The experimental data for p(8.1GeV) + Au collisions are analyzed within the framework of the statistical multifragmentation model (SMM) for the events with emission of at least two IMFs. It is found that the partition of hot nuclei is specified after expansion to a volume equal to Vt = (2.6+-0.3) Vo, with Vo as the volume at normal density. However, the freeze-out volume is found to be twice as large: Vf = (5+-1) Vo.
In this contribution we show that the biggest fragment charge distribution in central collisions of Xe+Sn leading to multifragmentation is an admixture of two asymptotic distributions observed for the lowest and highest bombarding energies. The evolu tion of the relative weights of the two components with bombarding energy is shown to be analogous to that observed as a function of time for the largest cluster produced in irreversible aggregation for a finite system. We infer that the size distribution of the largest fragment in nuclear multifragmentation is also characteristic of the time scale of the process, which is largely determined by the onset of radial expansion in this energy range.
The isotope yields of fragments, produced in the decay of the quasiprojectile in Au+Au peripheral collisions at 35 MeV/nucleon and those coming from the disassembly of the unique source formed in Xe+Cu central reactions at 30 MeV/nucleon, were measur ed. We show that the relative yields of neutron-rich isotopes increase with the excitation energy in multifragmentation reaction. In the framework of the statistical multifragmentation model which fairly well reproduces the experimental observables, this behaviour can be explained by increasing N/Z ratio of hot primary fragments, that corresponds to the statistical evolution of the decay mechanism with the excitation energy: from a compound-like decay to complete multifragmentation.
101 - B. Borderie 2008
This review article is focused on the tremendous progress realized during the last fifteen years in the understanding of multifragmentation and its relationship to the liquid-gas phase diagram of nuclei and nuclear matter. The explosion of the whole nucleus, early predicted by Bohr [N. Bohr, Nature 137 (1936) 351], is a very complex and rich subject which continues to fascinate nuclear physicists as well as theoreticians who extend the thermodynamics of phase transitions to finite systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا