ترغب بنشر مسار تعليمي؟ اضغط هنا

The stellar (n,gamma) cross section of 62Ni

65   0   0.0 ( 0 )
 نشر من قبل Michael Paul
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The 62Ni(n,gamma)63Ni(t_1/2=100+-2 yrs) reaction plays an important role in the control of the flow path of the slow neutron-capture (s-) nucleosynthesis process. We have measured for the first time the total cross section of this reaction for a quasi-Maxwellian (kT = 25 keV) neutron flux. The measurement was performed by fast-neutron activation, combined with accelerator mass spectrometry to detect directly the 63Ni product nuclei. The experimental value of 28.4+-2.8 mb, fairly consistent with a recent theoretical estimate, affects the calculated net yield of 62Ni itself and the whole distribution of nuclei with 62<A <90 produced by the weak s-process in massive stars.

قيم البحث

اقرأ أيضاً

The cross section of the $^{23}$Na($n, gamma$)$^{24}$Na reaction has been measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at $kT=5.1$ and 25 keV produced via the $^{18}$O($p, n$)$^{18}$F and $^{7}$Li($p, n$)$^{7}$Be reactions, respectively. The derived capture cross sections $langlesigmarangle_{rm kT=5 keV}=9.1pm0.3$ mb and $langlesigmarangle_{rm kT=25 keV}=2.03 pm 0.05$ mb are significantly lower than reported in literature. These results were used to substantially revise the radiative width of the first $^{23}$Na resonance and to establish an improved set of Maxwellian average cross sections. The implications of the lower capture cross section for current models of $s$-process nucleosynthesis are discussed.
247 - R. Izsak , A. Horvath , A. Kiss 2013
The applicability of Coulomb dissociation reactions to determine the cross section for the inverse neutron capture reaction was explored using the reaction 8Li(gamma,n)7Li. A 69.5 MeV/nucleon 8Li beam was incident on a Pb target, and the outgoing neu tron and 7Li nucleus were measured in coincidence. The deduced (n,gamma) excitation function is consistent with data for the direct capture reaction 7Li(n,gamma)8Li and with low-energy effective field theory calculations.
The $gamma n to pi^0 n$ differential cross section evaluated for 27 energy bins span the photon-energy range 290-813 MeV (W = 1.195-1.553 GeV) and the pion c.m. polar production angles, ranging from 18 deg to 162 deg, making use of model-dependent nu clear corrections to extract pi0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the 0-meson production. Our accumulation of 3.6 x 10^6 $gamma n to pi^0 n$ events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes $N^* to gamma n$ at the resonance poles are determined for the first time.
Nuclear level densities (NLDs) and $gamma$-ray strength functions ($gamma$SFs) have been extracted from particle-$gamma$ coincidences of the $^{92}$Zr($p,p gamma$)$^{92}$Zr and $^{92}$Zr($p,d gamma$)$^{91}$Zr reactions using the Oslo method. The new $^{91,92}$Zr $gamma$SF data, combined with photonuclear cross sections, cover the whole energy range from $E_{gamma} approx 1.5$~MeV up to the giant dipole resonance at $E_{gamma} approx 17$~MeV. The wide-range $gamma$SF data display structures at $E_{gamma} approx 9.5$~MeV, compatible with a superposition of the spin-flip $M1$ resonance and a pygmy $E1$ resonance. Furthermore, the $gamma$SF shows a minimum at $E_{gamma} approx 2-3$~MeV and an increase at lower $gamma$-ray energies. The experimentally constrained NLDs and $gamma$SFs are shown to reproduce known ($n, gamma$) and Maxwellian-averaged cross sections for $^{91,92}$Zr using the {sf TALYS} reaction code, thus serving as a benchmark for this indirect method of estimating ($n, gamma$) cross sections for Zr isotopes.
The capture cross section of $^{209}$Bi(n,$gamma$)$^{210g}$Bi was measured at different astrophysically energies including thermal capture cross section (25 meV), resonance integral, and the Maxwellian averaged cross section at a thermal energy of $k T$ = 30 keV. The partial capture cross section ($sigma_g$) was determined using the activation technique and by measuring the $^{210}$Po activity. The newly developed and tested NICE detector setup was used to measure the $alpha$-activity of the $^{210}$Po. Using this setup the thermal and resonance integral cross sections were determined to be $16.2;pm;0.97$~mb and $89.81;pm;8.0$~mb, respectively. And the Maxwellian average cross section was measured to be $2.01;pm;0.38$~mb.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا