ﻻ يوجد ملخص باللغة العربية
Nuclear level densities (NLDs) and $gamma$-ray strength functions ($gamma$SFs) have been extracted from particle-$gamma$ coincidences of the $^{92}$Zr($p,p gamma$)$^{92}$Zr and $^{92}$Zr($p,d gamma$)$^{91}$Zr reactions using the Oslo method. The new $^{91,92}$Zr $gamma$SF data, combined with photonuclear cross sections, cover the whole energy range from $E_{gamma} approx 1.5$~MeV up to the giant dipole resonance at $E_{gamma} approx 17$~MeV. The wide-range $gamma$SF data display structures at $E_{gamma} approx 9.5$~MeV, compatible with a superposition of the spin-flip $M1$ resonance and a pygmy $E1$ resonance. Furthermore, the $gamma$SF shows a minimum at $E_{gamma} approx 2-3$~MeV and an increase at lower $gamma$-ray energies. The experimentally constrained NLDs and $gamma$SFs are shown to reproduce known ($n, gamma$) and Maxwellian-averaged cross sections for $^{91,92}$Zr using the {sf TALYS} reaction code, thus serving as a benchmark for this indirect method of estimating ($n, gamma$) cross sections for Zr isotopes.
The cross sections of the 162Er(a,g,)166Yb and 162Er(a,n)165Yb reactions have been measured for the first time. The radiative alpha capture reaction cross section was measured from Ec.m. = 16.09 down to Ec.m. = 11.21 MeV, close to the astrophysically
The 62Ni(n,gamma)63Ni(t_1/2=100+-2 yrs) reaction plays an important role in the control of the flow path of the slow neutron-capture (s-) nucleosynthesis process. We have measured for the first time the total cross section of this reaction for a quas
We measured the 7Be(p,gamma)8B cross section from E_cm = 186 to 1200 keV, with a statistical-plus-systematic precision per point of better than +- 5%. All important systematic errors were measured including 8B backscattering losses. We obtain S_17(0)
The cross section of the $^{23}$Na($n, gamma$)$^{24}$Na reaction has been measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at $kT=5.1$ and 25 keV produced
The 95Zr(n,gamma)96Zr reaction cross section is crucial in the modelling of s-process nucleosynthesis in asymptotic giant branch stars because it controls the operation of the branching point at the unstable 95Zr and the subsequent production of 96Zr