ﻻ يوجد ملخص باللغة العربية
Isotopic yields for light particles and intermediate mass fragments have been measured for 112Sn+112Sn, 112Sn+124Sn, 124Sn+112Sn and 124Sn+124Sn central collisions at E/A=50 MeV and compared with predictions of stochastic mean field calculations. These calculations predict a sensitivity of the isotopic distributions to the density dependence of the asymmetry term of the nuclear equation of state. However, the secondary decay of the excited fragments modifies significantly the primary isotopic distributions and these modifications are rather sensitive to theoretical uncertainties in the excitation energies of the hot fragments. The predicted final isotope distributions are narrower than the experimental data and the sensitivity of the predicted yields to the density dependence of the asymmetry term is reduced.
Isotopically resolved fragments with Z<=20 have been studied with high resolution telescopes in a test run for the FAZIA collaboration. The fragments were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a n-rich (124Sn) and a n-poor (
A recent analysis of experimental ternary fission fragment yields using a nucleation moderated statistical equilibrium model reproduced observed yields with fairly good accuracy. In the present work, the same approach is applied to neck emission in p
Experimental kinetic energy distributions and small-angle two-particle correlation functions involving deuterons and tritons are compared for 36Ar+ 112,124Sn collisions at E/A = 61 MeV (i.e. for systems similar in size, but with different isospin con
Small-angle, two-particle correlation functions have been measured for 36Ar+ 112,124Sn collisions at E/A = 61 MeV. Total momentum gated neutron-proton (np) and proton-proton (pp) correlations are stronger for the 124Sn-target. Some of the correlation
Rapidity distributions of protons from central $^{197}$Au + $^{197}$Au collisions measured by the E895 Collaboration in the energy range from 2 to 8 AGeV at the Brookhaven AGS are presented. Longitudinal flow parameters derived using a thermal model