ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise Neutron Magnetic Form Factors

69   0   0.0 ( 0 )
 نشر من قبل Juerg Jourdan
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise data on the neutron magnetic form factor G_{mn} have been obtained with measurements of the ratio of cross sections of D(e,en) and D(e,ep) up to momentum transfers of Q^2 = 0.9 (GeV/c)^2. Data with typical uncertainties of 1.5% are presented. These data allow for the first time to extract a precise value of the magnetic radius of the neutron.

قيم البحث

اقرأ أيضاً

The neutron elastic magnetic form factor GMn has been extracted from quasielastic electron scattering data on deuterium with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic coverage of the measurement is continuous from Q2=1 GeV2 to 4.8 GeV2. High precision was achieved by employing a ratio technique in which many uncertainties cancel, and by a simultaneous in-situ calibration of the neutron detection efficiency, the largest correction to the data. Neutrons were detected using the CLAS electromagnetic calorimeters and the time-of-flight scintillators. Data were taken at two different electron beam energies, allowing up to four semi-independent measurements of GMn to be made at each value of Q2. The dipole parameterization is found to provide a good description of the data over the measured Q2 range.
The paper describes a precise measurement of electron scattering off the proton at momentum transfers of $0.003 lesssim Q^2 lesssim 1$ GeV$^2$. The average point-to-point error of the cross sections in this experiment is $sim$ 0.37%. These data are u sed for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low $Q^2$ values are used for a new determination of the electric and magnetic radii. An empirical determination of the Two-Photon-Exchange (TPE) correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.
New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c )^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.
A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm^-1. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data.
67 - T. Van Cauteren 2003
Predictions for the electromagnetic form factors of the Lambda$, Sigma and Xi hyperons are presented. The numerical calculations are performed within the framework of the fully relativistic constituent-quark model developed by the Bonn group. The com puted magnetic moments compare favorably with the experimentally known values. Most magnetic form factors G_M(Q^2) can be parametrized in terms of a dipole with cutoff masses ranging from 0.79 to 1.14 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا