ﻻ يوجد ملخص باللغة العربية
The neutron elastic magnetic form factor GMn has been extracted from quasielastic electron scattering data on deuterium with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic coverage of the measurement is continuous from Q2=1 GeV2 to 4.8 GeV2. High precision was achieved by employing a ratio technique in which many uncertainties cancel, and by a simultaneous in-situ calibration of the neutron detection efficiency, the largest correction to the data. Neutrons were detected using the CLAS electromagnetic calorimeters and the time-of-flight scintillators. Data were taken at two different electron beam energies, allowing up to four semi-independent measurements of GMn to be made at each value of Q2. The dipole parameterization is found to provide a good description of the data over the measured Q2 range.
A measurement of beam helicity asymmetries in the reaction 3He(e,en)pp has been performed at the Mainz Microtron in quasielastic kinematics in order to determine the electric to magnetic form factor ratio of the neutron, GEn/GMn, at a four momentum t
Precise data on the neutron magnetic form factor G_{mn} have been obtained with measurements of the ratio of cross sections of D(e,en) and D(e,ep) up to momentum transfers of Q^2 = 0.9 (GeV/c)^2. Data with typical uncertainties of 1.5% are presented.
We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of stran
The electric form factor of the neutron was determined from studies of the reaction He3(e,en)pp in quasi-elastic kinematics in Hall A at Jefferson Lab. Longitudinally polarized electrons were scattered off a polarized target in which the nuclear pola
The electric form factor of the neutron, G_En, has been measured at the Mainz Microtron by recoil polarimetry in the quasielastic D(e_pol,en_pol)p reaction. Three data points have been extracted at squared four-momentum transfers Q^2 = 0.3, 0.6 and 0