ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy of thermal quasiparticles in nuclei

139   0   0.0 ( 0 )
 نشر من قبل Magne Guttormsen
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Information on level density for nuclei with mass numbers A = 20 - 250 is deduced from discrete low-lying levels and neutron resonance data. The odd-mass nuclei exhibit in general 4 - 7 times the level density found for its neighboring even-even nuclei at the same excitation energy. This excess corresponds to an entropy of approx. 1.7 k for the odd particle. The value is approximately constant for all mid-shell nuclei and for all ground state spins. For these nuclei it is argued that the entropy scales with the number of quasiparticles. A simple model based on the canonical ensemble theory accounts qualitatively for the observed properties.

قيم البحث

اقرأ أيضاً

The behaviour of a di-nuclear system in the regime of strong pairing correlations is studied with the methods of statistical mechanics. It is shown that the thermal averaging is strong enough to assure the application of thermodynamical methods to th e energy exchange between the two nuclei in contact. In particular, thermal averaging justifies the definition of a nuclear temperature.
An analysis is presented of the expectations of the thermal model for particle production in collisions of small nuclei. The maxima observed in particle ratios of strange particles to pions as a function of beam energy in heavy ion collisions, are re duced when considering smaller nuclei. Of particular interest is the $Lambda/pi^+$ ratio shows the strongest maximum which survives even in collisions of small nuclei.
67 - Sebastian E. Kuhn 2015
I summarize recent results and discuss upcoming and planned experiments that attempt to elucidate how the structure of nucleons might be modified by nuclear binding.
In the events of peripheral dissociation of relativistic nuclei in the nuclear track emulsion, it is possible to study the emerging ensembles of He and H nuclei, including those from decays of unstable $^{8}$Be and $^{9}$B nuclei, as well as the Hoyl e state. These extremely short-lived states are identified by invariant masses calculated from the angles in 2$alpha$-pairs, 2$alpha p$- and 3$alpha$-triplets in the approximation of conservation of momentum per nucleon of the primary nucleus. In the same approach, it is possible to search for more complex states. This paper explores the correlation between the formation of $^{8}$Be nuclei and the multiplicity of accompanying $alpha$-particles in the dissociation of relativistic $^{16}$O, $^{22}$Ne, $^{28}$Si, and $^{197}$Au nuclei. On the above basis, estimates of this correlation are presented for the unstable $^{9}$B nucleus and the Hoyle state. The enhancement in the $^{8}$Be contribution to dissociation with the $alpha$-particle multiplicity has been found. Decays of $^{9}$B nuclei and Hoyle states follow the same trend.
A role of the unstable nuclei ${}^{6}$Be, ${}^{8}$Be and ${}^{9}$B in the dissociation of relativistic nuclei ${}^{7,9}$Be, ${}^{10}$B and ${}^{10,11}$C is under study on the basis of nuclear track emulsion exposed to secondary beams of the JINR Nucl otron. Contribution of the configuration ${}^{6}$Be + $mit{n}$ to the ${}^{7}$Be nucleus structure is 8 $pm$ 1% which is near the value for the configuration ${}^{6}$Li + $mit{p}$. Distributions over the opening angle of $alpha$-particle pairs indicate to a simultaneous presence of virtual ${}^{8}$Be$_{g.s.}$ and ${}^{8}$Be$_{2^+}$ states in the ground states of the ${}^{9}$Be and ${}^{10}$C nuclei. The core ${}^{9}$B is manifested in the {${}^{10}$C} nucleus with a probability of 30 $pm$ 4%. Selection of the ${}^{10}$C white stars accompanied by ${}^{8}$Be$_{g.s.}$ (${}^{9}$B) leads to appearance in the excitation energy distribution of 2$alpha$2$mit{p}$ quartets of the distinct peak with a maximum at 4.1 $pm$ 0.3 MeV. ${}^{8}$Be$_{g.s.}$ decays are presented in 24 $pm$ 7% of 2He + 2H events of the ${}^{11}$C coherent dissociation and 27 $pm$ 11% of the 3He ones. The channel ${}^{9}$B + H amounts 14 $pm$ 3%. The ${}^{8}$Be$_{g.s.}$ nucleus is manifested in the coherent dissociation ${}^{10}$B $to$ 2He + H with a probability of 25 $pm$ 5% including 14 $pm$ 3% of ${}^{9}$B decays. A probability ratio of the mirror channels ${}^{9}$B + $mit{n}$ and ${}^{9}$Be + $mit{p}$ is estimated to be 6 $pm$ 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا