ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamics of nuclei in thermal contact

303   0   0.0 ( 0 )
 نشر من قبل Karl-Heinz Schmidt
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The behaviour of a di-nuclear system in the regime of strong pairing correlations is studied with the methods of statistical mechanics. It is shown that the thermal averaging is strong enough to assure the application of thermodynamical methods to the energy exchange between the two nuclei in contact. In particular, thermal averaging justifies the definition of a nuclear temperature.

قيم البحث

اقرأ أيضاً

The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.
An analysis is presented of the expectations of the thermal model for particle production in collisions of small nuclei. The maxima observed in particle ratios of strange particles to pions as a function of beam energy in heavy ion collisions, are re duced when considering smaller nuclei. Of particular interest is the $Lambda/pi^+$ ratio shows the strongest maximum which survives even in collisions of small nuclei.
Information on level density for nuclei with mass numbers A = 20 - 250 is deduced from discrete low-lying levels and neutron resonance data. The odd-mass nuclei exhibit in general 4 - 7 times the level density found for its neighboring even-even nucl ei at the same excitation energy. This excess corresponds to an entropy of approx. 1.7 k for the odd particle. The value is approximately constant for all mid-shell nuclei and for all ground state spins. For these nuclei it is argued that the entropy scales with the number of quasiparticles. A simple model based on the canonical ensemble theory accounts qualitatively for the observed properties.
The high-momentum antisymmetrized molecular dynamics (HMAMD) is a new promising framework with significant analytical simplicity and efficiency inherited from its antisymmetrized molecular dynamics in describing the high momentum correlations in vari ous nuclear states. In the aim of further improving the numerical efficiency for the description of nucleon-nucleon correlation, we introduce a new formulation by including a new Gaussian weighted basis of high momentum pairs in the HMAMD wave function, with which very rapid convergence is obtained in numerical calculation. It is surprising that the very high-momentum components in the new HMAMD basis are found to be almost equivalent to the contact representation of the nucleon-nucleon pairs with very small nucleon-nucleon distance. The explicit formulation for the contact term significantly improves the numerical efficiency of the HMAMD method, which shows the importance of the contact correlation in the formulation of light nuclei.
The enhancement of radiative strength function (RSF) in the region of low $gamma$-rays energy ($E_{gamma}leq 12$ MeV), which is caused by the pygmy dipole resonance (PDR), is treated within the phonon damping model (PDM) plus exact thermal pairing (E P) without adding any extra PDR strength function. The numerical calculations performed for $^{161-163}$Dy show that, because of the effect of EP, the EP+PDM can describe reasonably well the total RSF data in both low- and high-energy regions of $gamma$-rays. Consequently, as compared to the conventional description within the phenomenological generalized Lorentzian (GLO) and standard Lorentzian (SLO) models, the EP+PDM calculations can eliminate at least eight free parameters. This indicates the important role of microscopic approaches towards the precise description of the RSF. In particular, temperature is found to have significant contributions to the RSF below the neutron separation energy, questioning again the validity of the Brink-Axel hypothesis in this energy region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا