ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the vector analyzing power in elastic electron-proton scattering as a probe of double photon exchange amplitudes

66   0   0.0 ( 0 )
 نشر من قبل Steven P. Wells
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first measurement of the vector analyzing power in inclusive transversely polarized elastic electron-proton scattering at Q^2 = 0.1 (GeV/c)^2 and large scattering angles. This quantity should vanish in the single virtual photon exchange, plane wave impulse approximation for this reaction, and can therefore provide information on double photon exchange amplitudes for electromagnetic interactions with hadronic systems. We find a non-zero value of A=-15.4+/-5.4 ppm. No calculations of this observable for nuclei other than spin 0 have been carried out in these kinematics, and the calculation using the spin orbit interaction from a charged point nucleus of spin 0 cannot describe these data.

قيم البحث

اقرأ أيضاً

We review recent theoretical and experimental progress on the role of two-photon exchange (TPE) in electron-proton scattering at low to moderate momentum transfers. We make a detailed comparison and analysis of the results of competing experiments on the ratio of e+p to e-p elastic scattering cross sections, and of the theoretical calculations describing them. A summary of the current experimental situation is provided, along with an outlook for future experiments.
High precision vector and tensor analyzing powers of elastic deuteron-proton d+p scattering have been measured at intermediate energies to investigate effects of three-nucleon forces (3NF). Angular distribution in the range of 70-120 degree in the ce nter-of mass frame for incident-deuteron energies of 130 and 180 MeV were obtained using the RIKEN facility. The beam polarization was unambiguously determined by measuring the 12C(d,alpha)10B(2+) reaction at 0 degree. Results of the measurements are compared with state-of-the-art three-nucleon calculations. The present modeling of nucleon-nucleon forces and its extension to the three-nucleon system is not sufficient to describe the high precision data consistently and requires, therefore, further investigation.
The single transverse spin asymmetry, A_N, of the p-carbon elastic scattering process in the Coulomb Nuclear Interference (CNI) region was measured using an ultra thin carbon target and polarized proton beam in the Relativistic Heavy Ion Collider (RH IC) at Brookhaven National Laboratory (BNL). In 2004, data were collected to calibrate the p-carbon process at two RHIC energies (24 GeV, 100 GeV). A_N was obtained as a function of momentum transfer -t. The results were fit with theoretical models which allow us to assess the contribution from a hadronic spin flip amplitude.
122 - P.G. Blunden , W. Melnitchouk , 2003
Two-photon exchange contributions to elastic electron-proton scattering cross sections are evaluated in a simple hadronic model including the finite size of the proton. The corrections are found to be small in magnitude, but with a strong angular dep endence at fixed $Q^2$. This is significant for the Rosenbluth technique for determining the ratio of the electric and magnetic form factors of the proton at high $Q^2$, and partly reconciles the apparent discrepancy with the results of the polarization transfer technique.
163 - M. E. Christy , T. Gautam , L. Ou 2021
We report new precision measurements of the elastic electron-proton scattering cross section for momentum transfer squared (Q$^2$) up to 15.75~gevsq. These data allow for improved extraction of the proton magnetic form factor at high Q$^2$ and nearly double the Q$^2$ range of direct longitudinal/transverse separated cross sections. A comparison of our results to polarization measurements establishes the presence of hard two-photon exchange in the $e$-$p$ elastic scattering cross section at greater than 95% confidence level for Q$^2$ up to 8 (GeV/c)$^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا