ﻻ يوجد ملخص باللغة العربية
Spatially extended chaotic systems with power-law decaying interactions are considered. Two coupled replicas of such systems synchronize to a common spatio-temporal chaotic state above a certain coupling strength. The synchronization transition is studied as a nonequilibrium phase transition and its critical properties are analyzed at varying the interaction range. The transition is found to be always continuous, while the critical indexes vary with continuity with the power law exponent characterizing the interaction. Strong numerical evidences indicate that the transition belongs to the {it anomalous directed percolation} family of universality classes found for L{e}vy-flight spreading of epidemic processes.
Two deterministic models for Brownian motion are investigated by means of numerical simulations and kinetic theory arguments. The first model consists of a heavy hard disk immersed in a rarefied gas of smaller and lighter hard disks acting as a therm
Networks of nonlinear units with time-delayed couplings can synchronize to a common chaotic trajectory. Although the delay time may be very large, the units can synchronize completely without time shift. For networks of coupled Bernoulli maps, analyt
A new method of virtual unknown parameter is proposed to synchronize two different systems with unknown parameters and disturbance in finite time. Virtual unknown parameters are introduced in order to avoid the unknown parameters from appearing in th
A new type of noise-induced synchronous behavior is described. This phenomenon, called incomplete noise-induced synchronization, arises for one-dimensional Ginzburg-Landau equations driven by common noise. The mechanisms resulting in the incomplete n
Synchronization of chaotic units coupled by their time delayed variables are investigated analytically. A new type of cooperative behavior is found: sublattice synchronization. Although the units of one sublattice are not directly coupled to each oth