ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural Stability and Hyperbolicity Violation in High-Dimensional Dynamical Systems

95   0   0.0 ( 0 )
 نشر من قبل David Albers
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This report investigates the dynamical stability conjectures of Palis and Smale, and Pugh and Shub from the standpoint of numerical observation and lays the foundation for a stability conjecture. As the dimension of a dissipative dynamical system is increased, it is observed that the number of positive Lyapunov exponents increases monotonically, the Lyapunov exponents tend towards continuous change with respect to parameter variation, the number of observable periodic windows decreases (at least below numerical precision), and a subset of parameter space exists such that topological change is very common with small parameter perturbation. However, this seemingly inevitable topological variation is never catastrophic (the dynamic type is preserved) if the dimension of the system is high enough.



قيم البحث

اقرأ أيضاً

120 - D. J. Albers , J. C. Sprott 2004
This paper examines the most probable route to chaos in high-dimensional dynamical systems in a very general computational setting. The most probable route to chaos in high-dimensional, discrete-time maps is observed to be a sequence of Neimark-Sacke r bifurcations into chaos. A means for determining and understanding the degree to which the Landau-Hopf route to turbulence is non-generic in the space of $C^r$ mappings is outlined. The results comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss.
130 - Ru-Hai Du , Shi-Xian Qu , 2018
We uncover a route from low-dimensional to high-dimensional chaos in nonsmooth dynamical systems as a bifurcation parameter is continuously varied. The striking feature is the existence of a finite parameter interval of periodic attractors in between the regimes of low- and high-dimensional chaos. That is, the emergence of high-dimensional chaos is preceded by the systems settling into a totally nonchaotic regime. This is characteristically distinct from the situation in smooth dynamical systems where high-dimensional chaos emerges directly and smoothly from low-dimensional chaos. We carry out an analysis to elucidate the underlying mechanism for the abrupt emergence and disappearance of the periodic attractors and provide strong numerical support for the typicality of the transition route in the pertinent two-dimensional parameter space. The finding has implications to applications where high-dimensional and robust chaos is desired.
184 - Awadhesh Prasad 2014
A new class of critical points, termed as perpetual points, where acceleration becomes zero but the velocity remains non-zero, are observed in dynamical systems. The velocity at these points is either maximum or minimum or of inflection behavior.Thes e points also show the bifurcation behavior as parameters of the system vary. These perpetual points are useful for locating the hidden oscillating attractors as well as co-existing attractors. Results show that these points are important for better understanding of transient dynamics in the phase space. The existence of these points confirms whether a system is dissipative or not. Various examples are presented, and results are discussed analytically as well as numerically.
We derive a master stability function (MSF) for synchronization in networks of coupled dynamical systems with small but arbitrary parametric variations. Analogous to the MSF for identical systems, our generalized MSF simultaneously solves the linear stability problem for near-synchronous states (NSS) for all possible connectivity structures. We also derive a general sufficient condition for stable near-synchronization and show that the synchronization error scales linearly with the magnitude of parameter variations.Our analysis underlines significant roles played by the Laplacian eigenvectors in the study of network synchronization of near-identical systems.
220 - K. B. Blyuss , S. Gupta 2012
We examine the properties of a recently proposed model for antigenic variation in malaria which incorporates multiple epitopes and both long-lasting and transient immune responses. We show that in the case of a vanishing decay rate for the long-lasti ng immune response, the system exhibits the so-called bifurcations without parameters due to the existence of a hypersurface of equilibria in the phase space. When the decay rate of the long-lasting immune response is different from zero, the hypersurface of equilibria degenerates, and a multitude of other steady states are born, many of which are related by a permutation symmetry of the system. The robustness of the fully symmetric state of the system was investigated by means of numerical computation of transverse Lyapunov exponents. The results of this exercise indicate that for a vanishing decay of long-lasting immune response, the fully symmetric state is not robust in the substantial part of the parameter space, and instead all variants develop their own temporal dynamics contributing to the overall time evolution. At the same time, if the decay rate of the long-lasting immune response is increased, the fully symmetric state can become robust provided the growth rate of the long-lasting immune response is rapid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا