ﻻ يوجد ملخص باللغة العربية
Statistics of tunneling rates in the presence of chaotic classical dynamics is discussed on a realistic example: a hydrogen atom placed in parallel uniform static electric and magnetic fields, where tunneling is followed by ionization along the fields direction. Depending on the magnetic quantum number, one may observe either a standard Porter-Thomas distribution of tunneling rates or, for strong scarring by a periodic orbit parallel to the external fields, strong deviations from it. For the latter case, a simple model based on random matrix theory gives the correct distribution.
The S-matrix theory formulation of closed-orbit theory recently proposed by Granger and Greene is extended to atoms in crossed electric and magnetic fields. We then present a semiclassical quantization of the hydrogen atom in crossed fields, which su
A systematic study of closed classical orbits of the hydrogen atom in crossed electric and magnetic fields is presented. We develop a local bifurcation theory for closed orbits which is analogous to the well-known bifurcation theory for periodic orbi
Closed-orbit theory provides a general approach to the semiclassical description of photo-absorption spectra of arbitrary atoms in external fields, the simplest of which is the hydrogen atom in an electric field. Yet, despite its apparent simplicity,
We describe the electromagnetic field by the massless limit of a massive vector field in the presence of a Coulomb gauge fixing term. The gauge fixing term ensures that, in the massless limit, the longitudinal mode is removed from the spectrum and on
Semiclassical periodic-orbit theory and closed-orbit theory represent a quantum spectrum as a superposition of contributions from individual classical orbits. Close to a bifurcation, these contributions diverge and have to be replaced with a uniform