ﻻ يوجد ملخص باللغة العربية
Closed-orbit theory provides a general approach to the semiclassical description of photo-absorption spectra of arbitrary atoms in external fields, the simplest of which is the hydrogen atom in an electric field. Yet, despite its apparent simplicity, a semiclassical quantization of this system by means of closed-orbit theory has not been achieved so far. It is the aim of this paper to close that gap. We first present a detailed analytic study of the closed classical orbits and their bifurcations. We then derive a simple form of the uniform semiclassical approximation for the bifurcations that is suitable for an inclusion into a closed-orbit summation. By means of a generalized version of the semiclassical quantization by harmonic inversion, we succeed in calculating high-quality semiclassical spectra for the hydrogen atom in an electric field.
With increasing energy the diamagnetic hydrogen atom undergoes a transition from regular to chaotic classical dynamics, and the closed orbits pass through various cascades of bifurcations. Closed orbit theory allows for the semiclassical calculation
A systematic study of closed classical orbits of the hydrogen atom in crossed electric and magnetic fields is presented. We develop a local bifurcation theory for closed orbits which is analogous to the well-known bifurcation theory for periodic orbi
Semiclassical periodic-orbit theory and closed-orbit theory represent a quantum spectrum as a superposition of contributions from individual classical orbits. Close to a bifurcation, these contributions diverge and have to be replaced with a uniform
The S-matrix theory formulation of closed-orbit theory recently proposed by Granger and Greene is extended to atoms in crossed electric and magnetic fields. We then present a semiclassical quantization of the hydrogen atom in crossed fields, which su
Bifurcations of classical orbits introduce divergences into semiclassical spectra which have to be smoothed with the help of uniform approximations. We develop a technique to extract individual energy levels from semiclassical spectra involving unifo