ترغب بنشر مسار تعليمي؟ اضغط هنا

The hydrogen atom in an electric field: Closed-orbit theory with bifurcating orbits

53   0   0.0 ( 0 )
 نشر من قبل Thomas Bartsch
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Closed-orbit theory provides a general approach to the semiclassical description of photo-absorption spectra of arbitrary atoms in external fields, the simplest of which is the hydrogen atom in an electric field. Yet, despite its apparent simplicity, a semiclassical quantization of this system by means of closed-orbit theory has not been achieved so far. It is the aim of this paper to close that gap. We first present a detailed analytic study of the closed classical orbits and their bifurcations. We then derive a simple form of the uniform semiclassical approximation for the bifurcations that is suitable for an inclusion into a closed-orbit summation. By means of a generalized version of the semiclassical quantization by harmonic inversion, we succeed in calculating high-quality semiclassical spectra for the hydrogen atom in an electric field.



قيم البحث

اقرأ أيضاً

99 - T. Fabcic , J. Main , T. Bartsch 2004
With increasing energy the diamagnetic hydrogen atom undergoes a transition from regular to chaotic classical dynamics, and the closed orbits pass through various cascades of bifurcations. Closed orbit theory allows for the semiclassical calculation of photoabsorption spectra of the diamagnetic hydrogen atom. However, at the bifurcations the closed orbit contributions diverge. The singularities can be removed with the help of uniform semiclassical approximations which are constructed over a wide energy range for different types of codimension one and two catastrophes. Using the uniform approximations and applying the high-resolution harmonic inversion method we calculate fully resolved semiclassical photoabsorption spectra, i.e., individual eigenenergies and transition matrix elements at laboratory magnetic field strengths, and compare them with the results of exact quantum calculations.
57 - T. Bartsch , J. Main , G. Wunner 2002
A systematic study of closed classical orbits of the hydrogen atom in crossed electric and magnetic fields is presented. We develop a local bifurcation theory for closed orbits which is analogous to the well-known bifurcation theory for periodic orbi ts and allows identifying the generic closed-orbit bifurcations of codimension one. Several bifurcation scenarios are described in detail. They are shown to have as their constituents the generic codimension-one bifurcations, which combine into a rich variety of complicated scenarios. We propose heuristic criteria for a classification of closed orbits that can serve to systematize the complex set of orbits.
59 - T. Bartsch , J. Main , G. Wunner 2003
Semiclassical periodic-orbit theory and closed-orbit theory represent a quantum spectrum as a superposition of contributions from individual classical orbits. Close to a bifurcation, these contributions diverge and have to be replaced with a uniform approximation. Its construction requires a normal form that provides a local description of the bifurcation scenario. Usually, the normal form is constructed in flat space. We present an example taken from the hydrogen atom in an electric field where the normal form must be chosen to be defined on a sphere instead of a Euclidean plane. In the example, the necessity to base the normal form on a topologically non-trivial configuration space reveals a subtle interplay between local and global aspects of the phase space structure. We show that a uniform approximation for a bifurcation scenario with non-trivial topology can be constructed using the established uniformization techniques. Semiclassical photo-absorption spectra of the hydrogen atom in an electric field are significantly improved when based on the extended uniform approximations.
50 - T. Bartsch , J. Main , G. Wunner 2002
The S-matrix theory formulation of closed-orbit theory recently proposed by Granger and Greene is extended to atoms in crossed electric and magnetic fields. We then present a semiclassical quantization of the hydrogen atom in crossed fields, which su cceeds in resolving individual lines in the spectrum, but is restricted to the strongest lines of each n-manifold. By means of a detailed semiclassical analysis of the quantum spectrum, we demonstrate that it is the abundance of bifurcations of closed orbits that precludes the resolution of finer details. They necessitate the inclusion of uniform semiclassical approximations into the quantization process. Uniform approximations for the generic types of closed-orbit bifurcation are derived, and a general method for including them in a high-resolution semiclassical quantization is devised.
76 - T. Bartsch , J. Main , G. Wunner 2002
Bifurcations of classical orbits introduce divergences into semiclassical spectra which have to be smoothed with the help of uniform approximations. We develop a technique to extract individual energy levels from semiclassical spectra involving unifo rm approximations. As a prototype example, the method is shown to yield excellent results for photo-absorption spectra for the hydrogen atom in an electric field in a spectral range where the abundance of bifurcations would render the standard closed-orbit formula without uniform approximations useless. Our method immediately applies to semiclassical trace formulae as well as closed-orbit theory and offers a general technique for the semiclassical quantization of arbitrary systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا