ﻻ يوجد ملخص باللغة العربية
We study the minimal speed of propagating fronts of convection reaction diffusion equations of the form $u_t + mu phi(u) u_x = u_{xx} +f(u)$ for positive reaction terms with $f(0 >0$. The function $phi(u)$ is continuous and vanishes at $u=0$. A variational principle for the minimal speed of the waves is constructed from which upper and lower bounds are obtained. This permits the a priori assesment of the effect of the convective term on the minimal speed of the traveling fronts. If the convective term is not strong enough, it produces no effect on the minimal speed of the fronts. We show that if $f(u)/sqrt{f(0)} + mu phi(u) < 0$, then the minimal speed is given by the linear value $2 sqrt{f(0)}$, and the convective term has no effect on the minimal speed. The results are illustrated by applying them to the exactly solvable case $u_t + mu u u_x = u_{xx} + u (1 -u)$. Results are also given for the density dependent diffusion case $u_t + mu phi(u) u_x = (D(u)u_x)_x +f(u)$.
We study the change in the speed of pushed and bistable fronts of the reaction diffusion equation in the presence of a small cut-off. We give explicit formulas for the shift in the speed for arbitrary reaction terms f(u). The dependence of the speed
We study the asymptotic speed of traveling fronts of the scalar reaction diffusion for positive reaction terms and with a diffusion coefficient depending nonlinearly on the concentration and on its gradient. We restrict our study to diffusion coeffic
In this paper, we prove some qualitative properties of pushed fronts for the periodic reaction-diffusion-equation with general monostable nonlinearities. Especially, we prove the exponential behavior of pushed fronts when they are approaching their u
We give an explicit formula for the change of speed of pushed and bistable fronts of the reaction diffusion equation when a small cutoff is applied at the unstable or metastable equilibrium point. The results are valid for arbitrary reaction terms and include the case of density dependent diffusion.
We establish an integral variational principle for the spreading speed of the one dimensional reaction diffusion equation with Stefan boundary conditions, for arbitrary reaction terms. This principle allows to obtain in a simple way the dependence of