ﻻ يوجد ملخص باللغة العربية
We study the asymptotic speed of traveling fronts of the scalar reaction diffusion for positive reaction terms and with a diffusion coefficient depending nonlinearly on the concentration and on its gradient. We restrict our study to diffusion coefficients of the form $D(u,u_x) = m u^{m-1} u_x^{m(p-2)}$ for which existence and convergence to traveling fronts has been established. We formulate a variational principle for the asymptotic speed of the fronts. Upper and lower bounds for the speed valid for any $mge0, pge 1$ are constructed. When $m=1, p=2$ the problem reduces to the constant diffusion problem and the bounds correspond to the classic Zeldovich Frank-Kamenetskii lower bound and the Aronson-Weinberger upper bound respectively. In the special case $m(p-1) = 1$ a local lower bound can be constructed which coincides with the aforementioned upper bound. The speed in this case is completely determined in agreement with recent results.
The determination of the speed of travelling fronts of the scalar reaction diffusion equation has been the subject of much study. Using different approaches seemingly disconnected variational principles have been established. The purpose of this work
Using pointwise semigroup techniques, we establish sharp rates of decay in space and time of a perturbed reaction diffusion front to its time-asymptotic limit. This recovers results of Sattinger, Henry and others of time-exponential convergence in we
We study the minimal speed of propagating fronts of convection reaction diffusion equations of the form $u_t + mu phi(u) u_x = u_{xx} +f(u)$ for positive reaction terms with $f(0 >0$. The function $phi(u)$ is continuous and vanishes at $u=0$. A varia
In this paper, we prove some qualitative properties of pushed fronts for the periodic reaction-diffusion-equation with general monostable nonlinearities. Especially, we prove the exponential behavior of pushed fronts when they are approaching their u
We establish an integral variational principle for the spreading speed of the one dimensional reaction diffusion equation with Stefan boundary conditions, for arbitrary reaction terms. This principle allows to obtain in a simple way the dependence of