ﻻ يوجد ملخص باللغة العربية
The higher rank analogue of the XXZ model with a boundary is considered on the basis of the vertex operator approach. We derive difference equations of the quantum Knizhnik-Zamolodchikov type for 2N-point correlations of the model. We present infinite product formulae of two point functions with free boundary condition by solving those difference equations with N=1.
We study the XXZ chain with a boundary at massless regime $-1<Delta<1$. We give the free field realizations of the boundary vacuum state and its dual. Using these realizations, we give the integrable representations of the correlation functions.
We study the SU(n) invariant massive Thirring model with boundary reflection. Our approach is based on the free field approach. We construct the free field realizations of the boundary state and its dual. For an application of these realizations, we
Finite XXZ chain with double boundaries is considered at critical regime $-1<Delta<1$. We construct the eigenvectors of finite Hamiltonian by means of vertex operators and the quasi-boundary states. Using the free field realizations of the vertex ope
We construct a solution of an analog of the Schr{o}dinger equation for the Hamiltonian $ H_I (z, t, q_1, q_2, p_1, p_2) $ corresponding to the second equation $P_1^2$ in the Painleve I hierarchy. This solution is produced by an explicit change of var
Discrete Painleve equations are nonlinear, nonautonomous difference equations of second-order. They have coefficients that are explicit functions of the independent variable $n$ and there are three different types of equations according to whether th