ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization and band-gap pinning in semiconductor superlattices with layer-thickness fluctuations

198   0   0.0 ( 0 )
 نشر من قبل Kurt Mader
 تاريخ النشر 1995
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider (AlAs)_n/(GaAs)_n superlattices with random thickness fluctuations Delta-n around the nominal period n. Using three-dimensional pseudopotential plane-wave band theory, we show that (i) any amount Delta-n/n of thickness fluctuations leads to band-edge wavefunction localization, (ii) for small Delta-n/n the SL band gap is pinned at the gap level produced by a single layer with ``wrong thickness n + Delta-n, (iii) the bound states due to monolayer thickness fluctuations lead to significant band-gap reductions, (iv) <001> AlAs/GaAs SLs with monolayer thickness fluctuations have a direct band gap, while the ideal <001> SLs are indirect for n<4.



قيم البحث

اقرأ أيضاً

The material BaBiO$_{3}$ is known for its insulating character. However, for thin films, in the ultra-thin limit, metallicity is expected because BaBiO$_{3}$ is suggested to return to its undistorted cubic phase where the oxygen octahedra breathing m ode will be suppresse as reported recently. Here, we confirm the influence of the oxygen breathing mode on the size of the band gap. The electronic properties of a BaBiO$_{3}$ thickness series are studied using textit{in-situ} scanning tunneling microscopy. We observe a wide-gap ($E_textrm{G}$~$>$ 1.2 V) to small-gap~($E_textrm{G}$~$approx$ 0.07 eV) semiconductor transition as a function of a decreasing BaBiO$_{3}$ film thickness. However, even for an ultra-thin BaBiO$_{3}$ film, no metallic state is present. The dependence of the band gap size is found to be coinciding with the intensity of the Raman response of the breathing phonon mode as a function of thickness.
Vertical and lateral heterogeneous structures of two-dimensional (2D) materials have paved the way for pioneering studies on the physics and applications of 2D materials. A hybridized hexagonal boron nitride (h-BN) and graphene lateral structure, a h eterogeneous 2D structure, has been fabricated on single-crystal metals or metal foils by chemical vapor deposition (CVD). However, once fabricated on metals, the h-BN/graphene lateral structures require an additional transfer process for device applications, as reported for CVD graphene grown on metal foils. Here, we demonstrate that a single-crystal h-BN/graphene lateral structure can be epitaxially grown on a wide-gap semiconductor, SiC(0001). First, a single-crystal h-BN layer with the same orientation as bulk SiC was grown on a Si-terminated SiC substrate at 850 oC using borazine molecules. Second, when heated above 1150 oC in vacuum, the h-BN layer was partially removed and, subsequently, replaced with graphene domains. Interestingly, these graphene domains possess the same orientation as the h-BN layer, resulting in a single-crystal h-BN/graphene lateral structure on a whole sample area. For temperatures above 1600 oC, the single-crystal h-BN layer was completely replaced by the single-crystal graphene layer. The crystalline structure, electronic band structure, and atomic structure of the h-BN/graphene lateral structure were studied by using low energy electron diffraction, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy, respectively. The h-BN/graphene lateral structure fabricated on a wide-gap semiconductor substrate can be directly applied to devices without a further transfer process, as reported for epitaxial graphene on a SiC substrate.
A blueprint for producing scalable digital graphene electronics has remained elusive. Current methods to produce semiconducting-metallic graphene networks all suffer from either stringent lithographic demands that prevent reproducibility, process-ind uced disorder in the graphene, or scalability issues. Using angle resolved photoemission, we have discovered a unique one dimensional metallic-semiconducting-metallic junction made entirely from graphene, and produced without chemical functionalization or finite size patterning. The junction is produced by taking advantage of the inherent, atomically ordered, substrate-graphene interaction when it is grown on SiC, in this case when graphene is forced to grow over patterned SiC steps. This scalable bottomup approach allows us to produce a semiconducting graphene strip whose width is precisely defined within a few graphene lattice constants, a level of precision entirely outside modern lithographic limits. The architecture demonstrated in this work is so robust that variations in the average electronic band structure of thousands of these patterned ribbons have little variation over length scales tens of microns long. The semiconducting graphene has a topologically defined few nanometer wide region with an energy gap greater than 0.5 eV in an otherwise continuous metallic graphene sheet. This work demonstrates how the graphene-substrate interaction can be used as a powerful tool to scalably modify graphenes electronic structure and opens a new direction in graphene electronics research.
We study experimentally and theoretically the effects of disorder, nonlinear screening, and magnetism in semiconductor heterostructures containing a $delta$-layer of Mn, where the charge carriers are confined within a quantum well and hence both ferr omagnetism and transport are two-dimensional (2D) and differ qualitatively from their bulk counterparts. Anomalies in the electrical resistance observed in both metallic and insulating structures can be interpreted as a signature of significant ferromagnetic correlations. The insulating samples turn out to be the most interesting as they can give us valuable insights into the mechanisms of ferromagnetism in these heterostructures. At low charge carrier densities, we show how the interplay of disorder and nonlinear screening can result in the organization of the carriers in the 2D transport channel into charge droplets separated by insulating barriers. Based on such a droplet picture and including the effect of magnetic correlations, we analyze the transport properties of this set of droplets, compare it with experimental data, and find a good agreement between the model calculations and experiment. Our analysis shows that the peak or shoulder-like features observed in temperature dependence of resistance of 2D heterostructures $delta$-doped by Mn lie significantly below the Curie temperature $T_{C}$ unlike the three-dimensional case, where it lies above and close to $T_{C}$. We also discuss the consequences of our description for understanding the mechanisms of ferromagnetism in the heterostructures under study.
An ac field, tuned exactly to resonance with the Stark ladder in an ideal tight binding lattice under strong dc bias, counteracts Wannier-Stark localization and leads to the emergence of extended Floquet states. If there is random disorder, these sta tes localize. The localization lengths depend non-monotonically on the ac field amplitude and become essentially zero at certain parameters. This effect is of possible relevance for characterizing the quality of superlattice samples, and for performing experiments on Anderson localization in systems with well-defined disorder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا