ترغب بنشر مسار تعليمي؟ اضغط هنا

A wide band gap metal-semiconductor-metal nanostructure made entirely from graphene

147   0   0.0 ( 0 )
 نشر من قبل Jeremy Hicks
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A blueprint for producing scalable digital graphene electronics has remained elusive. Current methods to produce semiconducting-metallic graphene networks all suffer from either stringent lithographic demands that prevent reproducibility, process-induced disorder in the graphene, or scalability issues. Using angle resolved photoemission, we have discovered a unique one dimensional metallic-semiconducting-metallic junction made entirely from graphene, and produced without chemical functionalization or finite size patterning. The junction is produced by taking advantage of the inherent, atomically ordered, substrate-graphene interaction when it is grown on SiC, in this case when graphene is forced to grow over patterned SiC steps. This scalable bottomup approach allows us to produce a semiconducting graphene strip whose width is precisely defined within a few graphene lattice constants, a level of precision entirely outside modern lithographic limits. The architecture demonstrated in this work is so robust that variations in the average electronic band structure of thousands of these patterned ribbons have little variation over length scales tens of microns long. The semiconducting graphene has a topologically defined few nanometer wide region with an energy gap greater than 0.5 eV in an otherwise continuous metallic graphene sheet. This work demonstrates how the graphene-substrate interaction can be used as a powerful tool to scalably modify graphenes electronic structure and opens a new direction in graphene electronics research.

قيم البحث

اقرأ أيضاً

The success of all-graphene electronics is severely hindered by the challenging realization and subsequent integration of semiconducting channels and metallic contacts. Here, we comprehensively investigate the electronic transport across width-modula ted heterojunctions consisting of a graphene quantum dot of varying lengths and widths embedded in a pair of armchair-edged metallic nanoribbons, of the kind recently fabricated via on-surface synthesis. We show that the presence of the quantum dot enables the opening of a width-dependent transport gap, thereby yielding built-in one-dimensional metal-semiconductor-metal junctions. Furthermore, we find that, in the vicinity of the band edges, the conductance is subject to a smooth transition from an antiresonant to a resonant transport regime upon increasing the channel length. These results are rationalized in terms of a competition between quantum-confinement effects and quantum dot-to-lead coupling. Overall, our work establishes graphene quantum dot nanoarchitectures as appealing platforms to seamlessly integrate gap-tunable semiconducting channels and metallic contacts into an individual nanoribbon, hence realizing self-contained carbon-based electronic devices.
Vertical and lateral heterogeneous structures of two-dimensional (2D) materials have paved the way for pioneering studies on the physics and applications of 2D materials. A hybridized hexagonal boron nitride (h-BN) and graphene lateral structure, a h eterogeneous 2D structure, has been fabricated on single-crystal metals or metal foils by chemical vapor deposition (CVD). However, once fabricated on metals, the h-BN/graphene lateral structures require an additional transfer process for device applications, as reported for CVD graphene grown on metal foils. Here, we demonstrate that a single-crystal h-BN/graphene lateral structure can be epitaxially grown on a wide-gap semiconductor, SiC(0001). First, a single-crystal h-BN layer with the same orientation as bulk SiC was grown on a Si-terminated SiC substrate at 850 oC using borazine molecules. Second, when heated above 1150 oC in vacuum, the h-BN layer was partially removed and, subsequently, replaced with graphene domains. Interestingly, these graphene domains possess the same orientation as the h-BN layer, resulting in a single-crystal h-BN/graphene lateral structure on a whole sample area. For temperatures above 1600 oC, the single-crystal h-BN layer was completely replaced by the single-crystal graphene layer. The crystalline structure, electronic band structure, and atomic structure of the h-BN/graphene lateral structure were studied by using low energy electron diffraction, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy, respectively. The h-BN/graphene lateral structure fabricated on a wide-gap semiconductor substrate can be directly applied to devices without a further transfer process, as reported for epitaxial graphene on a SiC substrate.
In this paper we present a comprehensive model for the tunneling current of the metal-insulator-graphene heterostructure, based on the Bardeen Transfer Hamiltonian method, of the metal-insulator-graphene heterostructure. As a particular case we have studied the metal-graphene junction, unveiling the role played by different electrical and physical parameters in determining the differential contact resistance.
Here we show, with simultaneous transport and photoemission measurements, that the graphene terminated SiC(0001) surface undergoes a metal-insulator transition (MIT) upon dosingwith small amounts of atomic hydrogen. We find the room temperature resis tance increases by about 4 orders of magnitude, a transition accompanied by anomalies in the momentum-resolved spectral function including a non-Fermi Liquid behaviour and a breakdown of the quasiparticle picture. These effects are discussed in terms of a possible transition to a strongly (Anderson) localized ground state.
Monatomic metal (e.g. silver) structures could form preferably at graphene edges. We explore their structural and electronic properties by performing density functional theory based first-principles calculations. The results show that cohesion betwee n metal atoms, as well as electronic coupling between metal atoms and graphene edges offer remarkable structural stability of the hybrid. We find that the outstanding mechanical properties of graphene allow tunable properties of the metal monatomic structures by straining the structure. The concept is extended to metal rings and helices that form at open ends of carbon nanotubes and edges of twisted graphene ribbons. These findings demostrate the role of graphene edges as an efficient one-dimensional template for low-dimensional metal structures that are mechanotunable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا