ﻻ يوجد ملخص باللغة العربية
This paper has been withdrawn Any real number $x$ in the unit interval can be expressed as a continued fraction $x=[n_1,...,n_{_N},...]$. Subsets of zero measure are obtained by imposing simple conditions on the $n_{_N}$. By imposing $n_{_N}le m forall Nin zN$, Jarnik defined the corresponding sets $E_m$ and gave a first estimate of $d_H(E_m)$, $d_H$ the Hausdorff dimension. Subsequent authors improved these estimates. In this paper we deal with $d_H(E_m)$ and $d_H(F_m)$, $F_m$ being the set of real numbers for which ${sum_{i=1}^N n_iover N}le m$.
In this paper we prove the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponent $mu$ $in$ (1/2, 1) is 2(1 -- $mu$) when $mu$ $ge$ $sqrt$ 2/2, whereas for $mu$ textless{} $sqrt$ 2/2 it is greater tha
We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension. Let a be any real number greater than or equal to 2 and let b be any non-negative real less than or equal to 2/a. We
We obtain the exact value of the Hausdorff dimension of the set of coefficients of Gauss sums which for a given $alpha in (1/2,1)$ achieve the order at least $N^{alpha}$ for infinitely many sum lengths $N$. For Weyl sums with polynomials of degree $d
Let $q$ be a prime with $q equiv 7 mod 8$, and let $K=mathbb{Q}(sqrt{-q})$. Then $2$ splits in $K$, and we write $mathfrak{p}$ for either of the primes $K$ above $2$. Let $K_infty$ be the unique $mathbb{Z}_2$-extension of $K$ unramified outside $math
A function which is transcendental and meromorphic in the plane has at least two singular values. On one hand, if a meromorphic function has exactly two singular values, it is known that the Hausdorff dimension of the escaping set can only be either