ﻻ يوجد ملخص باللغة العربية
Relying of properties of the inductive tensor product, we construct cyclic type homology theories for certain nuclear algebras. In this context we establish continuity theorems. We compute the periodic cyclic homology of the Schwartz algebra of p-adic GL(n) in terms of compactly supported de Rham cohomology of the tempered dual of GL(n).
We give explicit formulae for the continuous Hochschild and cyclic homology and cohomology of certain topological algebras. To this end we show that, for a continuous morphism $phi: Xto Y$ of complexes of complete nuclear $DF$-spaces, the isomorphism
We study the periodic cyclic homology groups of the cross-product of a finite type algebra $A$ by a discrete group $Gamma$. In case $A$ is commutative and $Gamma$ is finite, our results are complete and given in terms of the singular cohomology of th
Let k be a commutative algebra with the field of the rational numbers included in k and let (E,p,i) be a cleft extension of A. We obtain a new mixed complex, simpler than the canonical one, giving the Hochschild and cyclic homologies of E relative to
$HC_*(A rtimes G)$ is the cyclic homology of the crossed product algebra $A rtimes G.$ For any $g epsilon G$ we will define a homomorphism from $HC_*^g(A),$ the twisted cylic homology of $A$ with respect to $g,$ to $HC_*(A rtimes G).$ If $G$ is the f
Based on the ideas of Cuntz and Quillen, we give a simple construction of cyclic homology of unital algebras in terms of the noncommutative de Rham complex and a certain differential similar to the equivariant de Rham differential. We describe the Co