ﻻ يوجد ملخص باللغة العربية
Let B be a reductive Lie subalgebra of a semi-simple Lie algebra of the same rank both over the complex numbers. To each finite dimensional irreducible representation $V_lambda$ of F we assign a multiplet of irreducible representations of B with m elements in each multiplet, where m is the index of the Weyl group of B in the Weyl group of F. We obtain a generalization of the Weyl character formula; our formula gives the character of $V_lambda$ as a quotient whose numerator is an alternating sum of the characters in the multiplet associated to $V_lambda$ and whose denominator is an alternating sum of the characters of the multiplet associated to the trivial representation of F.
We provide the first formulae for the weights of all simple highest weight modules over Kac-Moody algebras. For generic highest weights, we present a formula for the weights of simple modules similar to the Weyl-Kac character formula. For the remaini
In arXiv:0810.2076 we presented a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the representation varieties of Riemann surfaces with semi-simple conjugacy classes at the
For a split reductive group $G$ over a finite field, we show that the neutral block of its mixed Hecke category with a fixed monodromy under the torus action is monoidally equivalent to the mixed Hecke category of the corresponding endoscopic group $
In a previous work (arXiv:0806.1503v2), we defined a family of subcomplexes of the $n$-dimensional half cube by removing the interiors of all half cube shaped faces of dimension at least $k$, and we proved that the homology of such a subcomplex is co
We study the Weyl groups of hyperbolic Kac-Moody algebras of `over-extended type and ranks 3, 4, 6 and 10, which are intimately linked with the four normed division algebras K=R,C,H,O, respectively. A crucial role is played by integral lattices of th