ﻻ يوجد ملخص باللغة العربية
We discuss two generalizations of the collar lemma. The first is the stable neighborhood theorem which says that a (not necessarily simple) closed geodesic in a hyperbolic surface has a lqlq stable neighborhoodrqrq whose width only depends on the length of the geodesic. As an application, we show that there is a lower bound for the length of a closed geodesic having crossing number $k$ on a hyperbolic surface. This lower bound tends to infinity with $k$. Our second generalization is to totally geodesic hypersurfaces of hyperbolic manifolds. Namely, we construct a tubular neighborhood function and show that an embedded closed totally geodesic hypersurface in a hyperbolic manifold has a tubular neighborhood whose width only depends on the area of the hypersurface (and hence not on the geometry of the ambient manifold). The implications of this result for volumes of hyperbolic manifolds is discussed. We also derive a (hyperbolic) quantitative version of the Klein-Maskit combination theorem (in all dimensions) for free products of fuchsian groups. Using this last theorem, we construct examples to illustrate the qualitative sharpness of the tubular neighborhood function.
We reinterpret the renormalized volume as the asymptotic difference of the isoperimetric profiles for convex co-compact hyperbolic 3-manifolds. By similar techniques we also prove a sharp Minkowski inequality for horospherically convex sets in $mathb
We study global aspects of the mean curvature flow of non-separating hypersurfaces $S$ in closed manifolds. For instance, if $S$ has non-vanishing mean curvature, we show its level set flow converges smoothly towards an embedded minimal hypersurface
We observe that Whiteheads lemma is an immediate consequence of Stallings folds.
We prove a variant of the Davies-Gaffney-Grigoryan Lemma for the continuous time heat kernel on graphs. We use it together with the Li-Yau inequality to obtain strong heat kernel estimates for graphs satisfying the exponential curvature dimension inequality.