ترغب بنشر مسار تعليمي؟ اضغط هنا

A remark on Whiteheads Lemma

91   0   0.0 ( 0 )
 نشر من قبل Michael Heusener
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe that Whiteheads lemma is an immediate consequence of Stallings folds.



قيم البحث

اقرأ أيضاً

In this note we observe that the notion of an induced representation has an analog for quasi-actions. We then use induced quasi-actions to refine some earlier rigidity results for product spaces.
The aim of this note is to give a geometric proof for classical local rigidity of lattices in semisimple Lie groups. We are reproving well known results in a more geometric (and hopefully clearer) way.
For an abelian group $A$, we give a precise homological description of the kernel of the natural map $Gamma(A) to Aotimes_mathbb{Z} A$, $gamma(a)mapsto aotimes a$, where $Gamma$ is whiteheads quadratic functor from the category of abelian groups to itself.
A generalized Baumslag-Solitar group is the fundamental group of a graph of groups all of whose vertex and edge groups are infinite cyclic. Levitt proves that any generalized Baumslag-Solitar group has property R-infinity, that is, any automorphism h as an infinite number of twisted conjugacy classes. We show that any group quasi-isometric to a generalized Baumslag-Solitar group also has property R-infinity. This extends work of the authors proving that any group quasi-isometric to a solvable Baumslag-Solitar BS(1,n) group has property R-infinity, and relies on the classification of generalized Baumslag-Solitar groups given by Whyte.
A subgroup $H$ of a group $G$ is confined if the $G$-orbit of $H$ under conjugation is bounded away from the trivial subgroup in the space $operatorname{Sub}(G)$ of subgroups of $G$. We prove a commutator lemma for confined subgroups. For groups of h omeomorphisms, this provides the exact analogue for confined subgroups (hence in particular for URSs) of the classical commutator lemma for normal subgroups: if $G$ is a group of homeomorphisms of a Hausdorff space $X$ and $H$ is a confined subgroup of $G$, then $H$ contains the derived subgroup of the rigid stabilizer of some open subset of $X$. We apply this commutator lemma to the study of URSs and actions on compact spaces of groups acting on rooted trees. We prove a theorem describing the structure of URSs of weakly branch groups and of their non-topologically free minimal actions. Among the applications of these results, we show: 1) if $G$ is a finitely generated branch group, the $G$-action on $partial T$ has the smallest possible orbital growth among all faithful $G$-actions; 2) if $G$ is a finitely generated branch group, then every embedding from $G$ into a group of homeomorphisms of strongly bounded type (e.g. a bounded automaton group) must be spatially realized; 3) if $G$ is a finitely generated weakly branch group, then $G$ does not embed into the group IET of interval exchange transformations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا