ترغب بنشر مسار تعليمي؟ اضغط هنا

A characterization of Gorenstein Hilbert functions in codimension four with small initial degree

37   0   0.0 ( 0 )
 نشر من قبل Fabrizio Zanello
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The main goal of this paper is to characterize the Hilbert functions of all (artinian) codimension 4 Gorenstein algebras that have at least two independent relations of degree four. This includes all codimension 4 Gorenstein algebras whose initial relation is of degree at most 3. Our result shows that those Hilbert functions are exactly the so-called {em SI-sequences} starting with (1,4,h_2,h_3,...), where $h_4 leq 33$. In particular, these Hilbert functions are all unimodal. We also establish a more general unimodality result, which relies on the values of the Hilbert function not being too big, but is independent of the initial degree.

قيم البحث

اقرأ أيضاً

We study the problem of whether an arbitrary codimension three graded artinian Gorenstein algebra has the Weak Lefschetz Property. We reduce this problem to checking whether it holds for all compressed Gorenstein algebras of odd socle degree. In the first open case, namely Hilbert function (1,3,6,6,3,1), we give a complete answer in every characteristic by translating the problem to one of studying geometric aspects of certain morphisms from $mathbb P^2$ to $mathbb P^3$, and Hesse configurations in $mathbb P^2$.
We study the closed convex hull of various collections of Hilbert functions. Working over a standard graded polynomial ring with modules that are generated in degree zero, we describe the supporting hyperplanes and extreme rays for the cones generate d by the Hilbert functions of all modules, all modules with bounded a-invariant, and all modules with bounded Castelnuovo-Mumford regularity. The first of these cones is infinite-dimensional and simplicial, the second is finite-dimensional but neither simplicial nor polyhedral, and the third is finite-dimensional and simplicial.
73 - V. Trivedi 2014
Here we compute Hilbert-Kunz functions of any nontrivial ruled surface over ${bf P}^1_k$, with respect to all ample line bundles on it.
121 - M.E. Rossi , G. Valla 2009
In this presentation we shall deal with some aspects of the theory of Hilbert functions of modules over local rings, and we intend to guide the reader along one of the possible routes through the last three decades of progress in this area of dynamic mathematical activity. Motivated by the ever increasing interest in this field, our goal is to gather together many new developments of this theory into one place, and to present them using a unifying approach which gives self-contained and easier proofs. In this text we shall discuss many results by different authors, following essentially the direction typified by the pioneering work of J. Sally. Our personal view of the subject is most visibly expressed by the presentation of Chapters 1 and 2 in which we discuss the use of the superficial elements and related devices. Basic techniques will be stressed with the aim of reproving recent results by using a more elementary approach. Over the past few years several papers have appeared which extend classical results on the theory of Hilbert functions to the case of filtered modules. The extension of the theory to the case of general filtrations on a module has one more important motivation. Namely, we have interesting applications to the study of graded algebras which are not associated to a filtration, in particular the Fiber cone and the Sally-module. We show here that each of these algebras fits into certain short exact sequences, together with algebras associated to filtrations. Hence one can study the Hilbert function and the depth of these algebras with the aid of the know-how we got in the case of a filtration.
Let $R$ be a polynomial ring over a field and $M= bigoplus_n M_n$ a finitely generated graded $R$-module, minimally generated by homogeneous elements of degree zero with a graded $R$-minimal free resolution $mathbf{F}$. A Cohen-Macaulay module $M$ is Gorenstein when the graded resolution is symmetric. We give an upper bound for the first Hilbert coefficient, $e_1$ in terms of the shifts in the graded resolution of $M$. When $M = R/I$, a Gorenstein algebra, this bound agrees with the bound obtained in cite{ES} in Gorenstein algebras with quasi-pure resolution. We conjecture a similar bound for the higher coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا