ﻻ يوجد ملخص باللغة العربية
Families of unconditionally $tau$-closed and $tau$-algebraic sets in a group are defined, which are natural generalizations of unconditionally closed and algebraic sets defined by Markov. A sufficient condition for the coincidence of these families is found. In particular, it is proved that these families coincide in any group of cardinality at most $tau$. This result generalizes both Markovs theorem on the coincidence of unconditionally closed and algebraic sets in a countable group (as is known, they may be different in an uncountable group) and Podewskis theorem on the topologizablity of any ungebunden group.
It is proved that, in certain subgroups of direct products of countable groups, the property of being an unconditionally closed set coincides with that of being an algebraic set. In particular, these properties coincide in all Abelian groups.
We prove continuity results for abstract epimorphisms of locally compact groups onto finitely generated groups.
Given a group $X$ we study the algebraic structure of the compact right-topological semigroup $lambda(X)$ consisting of maximal linked systems on $X$. This semigroup contains the semigroup $beta(X)$ of ultrafilters as a closed subsemigroup. We constr
A discrete subset $S$ of a topological gyrogroup $G$ with the identity $0$ is said to be a {it suitable set} for $G$ if it generates a dense subgyrogroup of $G$ and $Scup {0}$ is closed in $G$. In this paper, it was proved that each countable Hausdor
Fixing an arithmetic lattice $Gamma$ in an algebraic group $G$, the commensurability growth function assigns to each $n$ the cardinality of the set of subgroups $Delta$ with $[Gamma : Gamma cap Delta] [Delta: Gamma cap Delta] = n$. This growth functi