ترغب بنشر مسار تعليمي؟ اضغط هنا

Arithmetic lattices in unipotent algebraic groups

99   0   0.0 ( 0 )
 نشر من قبل Khalid Bou-Rabee Ph.D.
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Fixing an arithmetic lattice $Gamma$ in an algebraic group $G$, the commensurability growth function assigns to each $n$ the cardinality of the set of subgroups $Delta$ with $[Gamma : Gamma cap Delta] [Delta: Gamma cap Delta] = n$. This growth function gives a new setting where methods of F. Grunewald, D. Segal, and G. C. Smiths Subgroups of finite index in nilpotent groups apply to study arithmetic lattices in an algebraic group. In particular, we show that for any unipotent algebraic $mathbb{Z}$-group with arithmetic lattice $Gamma$, the Dirichlet function associated to the commensurability growth function satisfies an Euler decomposition. Moreover, the local parts are rational functions in $p^{-s}$, where the degrees of the numerator and denominator are independent of $p$. This gives regularity results for the set of arithmetic lattices in $G$.



قيم البحث

اقرأ أيضاً

Let $k/k$ be a finite purely inseparable field extension and let $G$ be a reductive $k$-group. We denote by $G=R_{k/k}(G)$ the Weil restriction of $G$ across $k/k$, a pseudo-reductive group. This article gives bounds for the exponent of the geometric unipotent radical $mathscr{R}_{u}(G_{bar{k}})$, focusing on the case $G=GL_n$.
We initiate an investigation of lattices in a new class of locally compact groups, so called locally pro-$p$-complete Kac-Moody groups. We discover that in rank 2 their cocompact lattices are particularly well-behaved: under mild assumptions, a cocom pact lattice in this completion contains no elements of order $p$. This statement is still an open question for the Caprace-Remy-Ronan completion. Using this, modulo results of Capdeboscq and Thomas, we classify edge-transitive cocompact lattices and describe a cocompact lattice of minimal covolume.
182 - M. Bate , B. Martin , G. Roehrle 2009
Let H be a reductive subgroup of a reductive group G over an algebraically closed field k. We consider the action of H on G^n, the n-fold Cartesian product of G with itself, by simultaneous conjugation. We give a purely algebraic characterization of the closed H-orbits in G^n, generalizing work of Richardson which treats the case H = G. This characterization turns out to be a natural generalization of Serres notion of G-complete reducibility. This concept appears to be new, even in characteristic zero. We discuss how to extend some key results on G-complete reducibility in this framework. We also consider some rationality questions.
We study reductive subgroups $H$ of a reductive linear algebraic group $G$ -- possibly non-connected -- such that $H$ contains a regular unipotent element of $G$. We show that under suitable hypotheses, such subgroups are $G$-irreducible in the sense of Serre. This generalizes results of Malle, Testerman and Zalesski. We obtain analogous results for Lie algebras and for finite groups of Lie type. Our proofs are short, conceptual and uniform.
We establish some results on the structure of the geometric unipotent radicals of pseudo-reductive k-groups. In particular, our main theorem gives bounds on the nilpotency class of geometric unipotent radicals of standard pseudo-reductive groups, whi ch are sharp in many cases. A major part of the proof rests upon consideration of the following situation: let k be a purely inseparable field extension of k of degree p^e and let G denote the Weil restriction of scalars R_{k/k}(G) of a reductive k-group G. When G= R_{k/k}(G) we also provide some results on the orders of elements of the unipotent radical RR_u(G_{bar k}) of the extension of scalars of G to the algebraic closure bar k of k.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا