ترغب بنشر مسار تعليمي؟ اضغط هنا

Decay Estimates for a Viscous Hamilton-Jacobi Equation with Homogenious Dirichet Boundary Conditions

74   0   0.0 ( 0 )
 نشر من قبل Said Benachour
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف Said Benachour




اسأل ChatGPT حول البحث

Global classical solutions to the viscous Hamilton-Jacobi equation with homogenious Dirichlet boundary conditions are shown to converge to zero at the same speed as the linear heat semigroup when p > 1. For p = 1, an exponential decay to zero is also obtained in one space dimension but the rate depends on a and differs from that of the linear heat equation. Finally, if 0 < p < 1 and a < 0, finite time extinction occurs for non-negative solutions.


قيم البحث

اقرأ أيضاً

60 - Said Benachour 2006
We prove the existence and the uniqueness of strong solutions for the viscous Hamilton-Jacobi Equation with Neumann boundary condition and initial data a continious function. Then, we study the large time behavior of the solutions.
137 - Said Benachour 2008
Sharp temporal decay estimates are established for the gradient and time derivative of solutions to a viscous Hamilton-Jacobi equation as well the associated Hamilton-Jacobi equation. Special care is given to the dependence of the estimates on the vi scosity. The initial condition being only continuous and either bounded or non-negative. The main requirement on the Hamiltonians is that it grows superlinearly or sublinearly at infinity, including in particular H(r) = r^p for r non-negatif and p positif and different from 1.
183 - Said Benachour 2007
The large time behavior of solutions to Cauchy problem for viscous Hamilton-Jacobi equation is classified. The large time asymptotics are given by very singular self-similar solutions on one hand and by self-similar viscosity solutions on the other hand
120 - J. Unterberger 2013
We study in this series of articles the Kardar-Parisi-Zhang (KPZ) equation $$ partial_t h(t,x)= uDelta h(t,x)+lambda V(| abla h(t,x)|) +sqrt{D}, eta(t,x), qquad xin{mathbb{R}}^d $$ in $dge 1$ dimensions. The forcing term $eta$ in the right-hand side is a regularized white noise. The deposition rate $V$ is assumed to be isotropic and convex. Assuming $V(0)ge 0$, one finds $V(| abla h|)ltimes | abla h|^2$ for small gradients, yielding the equation which is most commonly used in the literature. The present article, a continuation of [24], is dedicated to a generalization of the PDE estimates obtained in the previous article to the case of a deposition rate $V$ with polynomial growth of arbitrary order at infinity, for which in general the Cole-Hopf transformation does not allow any more a comparison to the heat equation. The main tool here instead is the representation of $h$ as the solution of some minimization problem through the Hamilton-Jacobi-Bellman formalism. This sole representation turns out to be powerful enough to produce local or pointwise estimates in ${cal W}$-spaces of functions with locally bounded averages, as in [24], implying in particular global existence and uniqueness of solutions.
We consider a non-isothermal modified Cahn--Hilliard equation which was previously analyzed by M. Grasselli et al. Such an equation is characterized by an inertial term and a viscous term and it is coupled with a hyperbolic heat equation. The resulti ng system was studied in the case of no-flux boundary conditions. Here we analyze the case in which the order parameter is subject to a dynamic boundary condition. This assumption requires a more refined strategy to extend the previous results to the present case. More precisely, we first prove the well-posedness for solutions with bounded energy as well as for weak solutions. Then we establish the existence of a global attractor. Finally, we prove the convergence of any given weak solution to a single equilibrium by using a suitable Lojasiewicz--Simon inequality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا