ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-isothermal viscous Cahn--Hilliard equation with inertial term and dynamic boundary conditions

186   0   0.0 ( 0 )
 نشر من قبل Maurizio Grasselli
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a non-isothermal modified Cahn--Hilliard equation which was previously analyzed by M. Grasselli et al. Such an equation is characterized by an inertial term and a viscous term and it is coupled with a hyperbolic heat equation. The resulting system was studied in the case of no-flux boundary conditions. Here we analyze the case in which the order parameter is subject to a dynamic boundary condition. This assumption requires a more refined strategy to extend the previous results to the present case. More precisely, we first prove the well-posedness for solutions with bounded energy as well as for weak solutions. Then we establish the existence of a global attractor. Finally, we prove the convergence of any given weak solution to a single equilibrium by using a suitable Lojasiewicz--Simon inequality.



قيم البحث

اقرأ أيضاً

We consider a relaxation of the viscous Cahn-Hilliard equation induced by the second-order inertial term~$u_{tt}$. The equation also contains a semilinear term $f(u)$ of singular type. Namely, the function $f$ is defined only on a bounded interval of ${mathbb R}$ corresponding to the physically admissible values of the unknown $u$, and diverges as $u$ approaches the extrema of that interval. In view of its interaction with the inertial term $u_{tt}$, the term $f(u)$ is difficult to be treated mathematically. Based on an approach originally devised for the strongly damped wave equation, we propose a suitable concept of weak solution based on duality methods and prove an existence result.
P. Galenko et al. proposed a modified Cahn-Hilliard equation to model rapid spinodal decomposition in non-equilibrium phase separation processes. This equation contains an inertial term which causes the loss of any regularizing effect on the solution s. Here we consider an initial and boundary value problem for this equation in a two-dimensional bounded domain. We prove a number of results related to well-posedness and large time behavior of solutions. In particular, we analyze the existence of bounded absorbing sets in two different phase spaces and, correspondingly, we establish the existence of the global attractor. We also demonstrate the existence of an exponential attractor.
The existence of an inertial manifold for the 3D Cahn-Hilliard equation with periodic boundary conditions is verified using the proper extension of the so-called spatial averaging principle introduced by G. Sell and J. Mallet-Paret. Moreover, the extra regularity of this manifold is also obtained.
We prove existence, uniqueness, regularity and separation properties for a nonlocal Cahn-Hilliard equation with a reaction term. We deal here with the case of logarithmic potential and degenerate mobility as well an uniformly lipschitz in $u$ reaction term $g(x,t,u).$
This paper is concerned with a non-isothermal Cahn-Hilliard model based on a microforce balance. The model was derived by A. Miranville and G. Schimperna starting from the two fundamental laws of Thermodynamics, following M. Gurtins two-scale approac h. The main working assumptions are made on the behaviour of the heat flux as the absolute temperature tends to zero and to infinity. A suitable Ginzburg-Landau free energy is considered. Global-in-time existence for the initial-boundary value problem associated to the entropy formulation and, in a subcase, also to the weak formulation of the model is proved by deriving suitable a priori estimates and showing weak sequential stability of families of approximating solutions. At last, some highlights are given regarding a possible approximation scheme compatible with the a-priori estimates available for the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا