ﻻ يوجد ملخص باللغة العربية
One of the main objectives of equilibrium state statistical physics is to analyze which symmetries of an interacting particle system in equilibrium are broken or conserved. Here we present a general result on the conservation of translational symmetry for two-dimensional Gibbsian particle systems. The result applies to particles with internal degrees of freedom and fairly arbitrary interaction, including the interesting cases of discontinuous, singular, and hard core interaction. In particular we thus show the conservation of translational symmetry for the continuum Widom Rowlinson model and a class of continuum Potts type models.
The conservation of translation as a symmetry in two-dimensional systems with interaction is a classical subject of statistical mechanics. Here we establish such a result for Gibbsian particle systems with two-body interaction, where the interesting
We show that oscillations are excited in a complex system under the influence of the external force, if the parameters of the system experience rapid change due to the changes in its internal structure. This excitation is collision-like and does not
We study the effects of hole doping on one-dimensional Mott insulators with orbital degrees of freedom. We describe the system in terms of a generalized t-J model. At a specific point in parameter space the model becomes integrable in analogy to the
We consider two-dimensional marked point processes which are Gibbsian with a two-body-potential U. U is supposed to have an internal continuous symmetry. We show that under suitable continuity conditions the considered processes are invariant under t
We use the weight $delta$I, deduced from the estimation of Lyapunov vectors, in order to characterise regions in the kinetic (x, v) space with particles that most contribute to chaoticity. For the paradigmatic model, the cosine Hamiltonian mean field