ﻻ يوجد ملخص باللغة العربية
We study a family of subvarieties of the flag variety defined by certain linear conditions, called Hessenberg varieties. We compare them to Schubert varieties. We prove that some Schubert varieties can be realized as Hessenberg varieties and vice versa. Our proof explicitly identifies these Schubert varieties by their permutation and computes their dimension. We use this to answer an open question by proving that Hessenberg varieties are not always pure dimensional. We give examples that neither semisimple nor nilpotent Hessenberg varieties need be pure; the latter are connected, non-pure-dimensional Hessenberg varieties. Our methods require us to generalize the definition of Hessenberg varieties.
Recently Brosnan and Chow have proven a conjecture of Shareshian and Wachs describing a representation of the symmetric group on the cohomology of regular semisimple Hessenberg varieties for $GL_n(mathbb{C})$. A key component of their argument is tha
This paper studies the geometry and combinatorics of three interrelated varieties: Springer fibers, Steinberg varieties, and parabolic Hessenberg varieties. We prove that each parabolic Hessenberg variety is the pullback of a Steinberg variety under
Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes
This article surveys recent developments on Hessenberg varieties, emphasizing some of the rich connections of their cohomology and combinatorics. In particular, we will see how hyperplane arrangements, representations of symmetric groups, and Stanley
In this paper, we study the geometry of various Hessenberg varieties in type A, as well as families thereof, with the additional goal of laying the groundwork for future computations of Newton-Okounkov bodies of Hessenberg varieties. Our main results