ﻻ يوجد ملخص باللغة العربية
This paper studies the geometry and combinatorics of three interrelated varieties: Springer fibers, Steinberg varieties, and parabolic Hessenberg varieties. We prove that each parabolic Hessenberg variety is the pullback of a Steinberg variety under the projection of the flag variety to an appropriate partial flag variety and we give three applications of this result. The first application constructs an explicit paving of all Steinberg varieties in Lie type $A$ in terms of semistandard tableaux. As a result, we obtain an elementary proof of a theorem of Steinberg and Shimomura that the well-known Kostka numbers count the maximal-dimensional irreducible components of Steinberg varieties. The second application proves an open conjecture for certain parabolic Hessenberg varieties in Lie type A by showing that their Betti numbers equal those of a specific union of Schubert varieties. The third application proves that the irreducible components of parabolic Hessenberg varieties are in bijection with the irreducible components of the Steinberg variety. All three of these applications extend our geometric understanding of the three varieties at the heart of this paper, a full understanding of which is unknown even for Springer varieties, despite over forty years worth of work.
Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes
We study a family of subvarieties of the flag variety defined by certain linear conditions, called Hessenberg varieties. We compare them to Schubert varieties. We prove that some Schubert varieties can be realized as Hessenberg varieties and vice ver
This article surveys recent developments on Hessenberg varieties, emphasizing some of the rich connections of their cohomology and combinatorics. In particular, we will see how hyperplane arrangements, representations of symmetric groups, and Stanley
Recently Brosnan and Chow have proven a conjecture of Shareshian and Wachs describing a representation of the symmetric group on the cohomology of regular semisimple Hessenberg varieties for $GL_n(mathbb{C})$. A key component of their argument is tha
In this paper, we study the geometry of various Hessenberg varieties in type A, as well as families thereof, with the additional goal of laying the groundwork for future computations of Newton-Okounkov bodies of Hessenberg varieties. Our main results