ﻻ يوجد ملخص باللغة العربية
We introduce a notion of normal form for transversely projective structures of singular foliations on complex manifolds. Our first main result says that this normal form exists and is unique when ambient space is two-dimensional. From this result one obtains a natural way to produce invariants for transversely projective foliations on surfaces. Our second main result says that on projective surfaces one can construct singular transversely projective foliations with prescribed monodromy.
Given a (singular, codimension 1) holomorphic foliation F on a complex projective manifold X, we study the group PsAut(X, F) of pseudo-automorphisms of X which preserve F ; more precisely, we seek sufficient conditions for a finite index subgroup of
We discuss the history of the monodromy theorem, starting from Weierstrass, and the concept of monodromy group. From this viewpoint we compare then the Weierstrass , the Legendre and other normal forms for elliptic curves, explaining their geometric
We study foliations $mathcal{F}$ on Hirzebruch surfaces $S_delta$ and prove that, similarly to those on the projective plane, any $mathcal{F}$ can be represented by a bi-homogeneous polynomial affine $1$-form. In case $mathcal{F}$ has isolated singul
We initiate the study of random iteration of automorphisms of real and complex projective surfaces, or more generally compact K{a}hler surfaces, focusing on the fundamental problem of classification of stationary measures. We show that, in a number o
There have been several constructions of family of varieties with exceptional monodromy group. In most cases, these constructions give Hodge structures with high weight(Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with