ﻻ يوجد ملخص باللغة العربية
We consider a two-type oriented competition model on the first quadrant of the two-dimensional integer lattice. Each vertex of the space may contain only one particle of either Red type or Blue type. A vertex flips to the color of a randomly chosen southwest nearest neighbor at exponential rate 2. At time zero there is one Red particle located at (1,0) and one Blue particle located at (0,1). The main result is a partial shape theorem: Denote by R(t) and B(t) the red and blue regions at time t. Then (i) eventually the upper half of the unit square contains no points of B(t)=t, and the lower half no points of R(t)=t; and (ii) with positive probability there are angular sectors rooted at (1,1) that are eventually either red or blue. The second result is contingent on the uniform curvature of the boundary of the corresponding Richardson shape.
We consider a two-type stochastic competition model on the integer lattice Z^d. The model describes the space evolution of two ``species competing for territory along their boundaries. Each site of the space may contain only one representative (also
Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncer
We study the directed last-passage percolation model on the planar integer lattice with nearest-neighbor steps and general i.i.d. weights on the vertices, outside the class of exactly solvable models. In a previous paper we constructed stationary coc
We consider different problems within the general theme of long-range percolation on oriented graphs. Our aim is to settle the so-called truncation question, described as follows. We are given probabilities that certain long-range oriented bonds are
In Poisson percolation each edge becomes open after an independent exponentially distributed time with rate that decreases in the distance from the origin. As a sequel to our work on the square lattice, we describe the limiting shape of the component