ﻻ يوجد ملخص باللغة العربية
We consider different problems within the general theme of long-range percolation on oriented graphs. Our aim is to settle the so-called truncation question, described as follows. We are given probabilities that certain long-range oriented bonds are open; assuming that the sum of these probabilities is infinite, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. We give some conditions in which the answer is affirmative. We also translate some of our results on oriented percolation to the context of a long-range contact process.
We consider oriented long-range percolation on a graph with vertex set $mathbb{Z}^d times mathbb{Z}_+$ and directed edges of the form $langle (x,t), (x+y,t+1)rangle$, for $x,y$ in $mathbb{Z}^d$ and $t in mathbb{Z}_+$. Any edge of this form is open wi
We consider random walk and self-avoiding walk whose 1-step distribution is given by $D$, and oriented percolation whose bond-occupation probability is proportional to $D$. Suppose that $D(x)$ decays as $|x|^{-d-alpha}$ with $alpha>0$. For random wal
We consider directed last-passage percolation on the random graph G = (V,E) where V = Z and each edge (i,j), for i < j, is present in E independently with some probability 0 < p <= 1. To every present edge (i,j) we attach i.i.d. random weights v_{i,j
We prove that the Fourier transform of the properly-scaled normalized two-point function for sufficiently spread-out long-range oriented percolation with index alpha>0 converges to e^{-C|k|^{alphawedge2}} for some Cin(0,infty) above the upper-critica
We consider Bernoulli bond percolation on oriented regular trees, where besides the usual short bonds, all bonds of a certain length are added. Independently, short bonds are open with probability $p$ and long bonds are open with probability $q$. We