ترغب بنشر مسار تعليمي؟ اضغط هنا

An Entropic Proof of Changs Inequality

381   0   0.0 ( 0 )
 نشر من قبل Cristopher Moore
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Changs lemma is a useful tool in additive combinatorics and the analysis of Boolean functions. Here we give an elementary proof using entropy. The constant we obtain is tight, and we give a slight improvement in the case where the variables are highly biased.



قيم البحث

اقرأ أيضاً

184 - S. Gerhold , M. Kauers 2005
We show how Turans inequality $P_n(x)^2-P_{n-1}(x)P_{n+1}(x)geq 0$ for Legendre polynomials and related inequalities can be proven by means of a computer procedure. The use of this procedure simplifies the daily work with inequalities. For instance, we have found the stronger inequality $|x|P_n(x)^2-P_{n-1}(x)P_{n+1}(x)geq 0$, $-1leq xleq 1$, effortlessly with the aid of our method.
79 - Joshua A. Grochow 2016
Mahaneys Theorem states that, assuming $mathsf{P} eq mathsf{NP}$, no NP-hard set can have a polynomially bounded number of yes-instances at each input length. We give an exposition of a very simple unpublished proof of Manindra Agrawal whose ideas a ppear in Agrawal-Arvind (Geometric sets of low information content, Theoret. Comp. Sci., 1996). This proof is so simple that it can easily be taught to undergraduates or a general graduate CS audience - not just theorists! - in about 10 minutes, which the author has done successfully several times. We also include applications of Mahaneys Theorem to fundamental questions that bright undergraduates would ask which could be used to fill the remaining hour of a lecture, as well as an application (due to Ikenmeyer, Mulmuley, and Walter, arXiv:1507.02955) to the representation theory of the symmetric group and the Geometric Complexity Theory Program. To this author, the fact that sparsity results on NP-complete sets have an application to classical questions in representation theory says that they are not only a gem of classical theoretical computer science, but indeed a gem of mathematics.
Changs lemma (Duke Mathematical Journal, 2002) is a classical result with applications across several areas in mathematics and computer science. For a Boolean function $f$ that takes values in {-1,1} let $r(f)$ denote its Fourier rank. For each posit ive threshold $t$, Changs lemma provides a lower bound on $wt(f):=Pr[f(x)=-1]$ in terms of the dimension of the span of its characters with Fourier coefficients of magnitude at least $1/t$. We examine the tightness of Changs lemma w.r.t. the following three natural settings of the threshold: - the Fourier sparsity of $f$, denoted $k(f)$, - the Fourier max-supp-entropy of $f$, denoted $k(f)$, defined to be $max {1/|hat{f}(S)| : hat{f}(S) eq 0}$, - the Fourier max-rank-entropy of $f$, denoted $k(f)$, defined to be the minimum $t$ such that characters whose Fourier coefficients are at least $1/t$ in absolute value span a space of dimension $r(f)$. We prove new lower bounds on $wt(f)$ in terms of these measures. One of our lower bounds subsumes and refines the previously best known upper bound on $r(f)$ in terms of $k(f)$ by Sanyal (ToC, 2019). Another lower bound is based on our improvement of a bound by Chattopadhyay, Hatami, Lovett and Tal (ITCS, 2019) on the sum of the absolute values of the level-$1$ Fourier coefficients. We also show that Changs lemma for the these choices of the threshold is asymptotically outperformed by our bounds for most settings of the parameters involved. Next, we show that our bounds are tight for a wide range of the parameters involved, by constructing functions (which are modifications of the Addressing function) witnessing their tightness. Finally we construct Boolean functions $f$ for which - our lower bounds asymptotically match $wt(f)$, and - for any choice of the threshold $t$, the lower bound obtained from Changs lemma is asymptotically smaller than $wt(f)$.
93 - Bo Ning 2013
Recently, Straub gave an interesting $q$-analogue of a binomial congruence of Ljunggren. In this note we give an inductive proof of his result.
This paper is intended to give a characterization of the optimality case in Nashs inequality, based on methods of nonlinear analysis for elliptic equations and techniques of the calculus of variations. By embedding the problem into a family of Gaglia rdo-Nirenberg inequalities, this approach reveals why optimal functions have compact support and also why optimal constants are determined by a simple spectral problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا