ﻻ يوجد ملخص باللغة العربية
We study global fixed points for actions of Coxeter groups on nonpositively curved singular spaces. In particular, we consider property FA_n, an analogue of Serres property FA for actions on CAT(0) complexes. Property FA_n has implications for irreducible representations and complex of groups decompositions. In this paper, we give a specific condition on Coxeter presentations that implies FA_n and show that this condition is in fact equivalent to FA_n for n=1 and 2. As part of the proof, we compute the Gersten-Stallings angles between special subgroups of Coxeter groups.
We give explicit necessary and sufficient conditions for the abstract commensurability of certain families of 1-ended, hyperbolic groups, namely right-angled Coxeter groups defined by generalized theta-graphs and cycles of generalized theta-graphs, a
We use probabilistic methods to prove that many Coxeter groups are incoherent. In particular, this holds for Coxeter groups of uniform exponent > 2 with sufficiently many generators.
An odd Coxeter group $W$ is one which admits a Coxeter system $(W,S)$ for which all the exponents $m_{ij}$ are either odd or infinity. The paper investigates the family of odd Coxeter groups whose associated labeled graphs $mathcal{V}_{(W,S)}$ are tr
We confirm the Hanna Neumann conjecture for topologically finitely generated closed subgroups $U$ and $W$ of a nonsolvable Demushkin group $G$. Namely, we show that begin{equation*} sum_{g in U backslash G/W} bar d(U cap gWg^{-1}) leq bar d(U) bar d(